排序方式: 共有191条查询结果,搜索用时 15 毫秒
91.
干滩长度是整个尾矿坝安全稳定性的一个重要参数。为了实时准确地测得干滩长度值,提出了一种高效、智能、准确的在线监测新方法--基于Mask R-CNN实例分割算法的干滩长度测量方法。此方法共分为4部分:(1) 在尾矿坝两岸安装监控摄像头;(2) 基于Mask R-CNN算法,训练出识别水线并输出水线坐标的网络模型;(3) 将水线轮廓坐标与实际干滩长度进行回归分析,拟合出测量算法关系式;(4)将水线坐标输入上述关系式,即可通过视频画面实时测得干滩长度。研究结果表明,此模型能够准确地进行干滩长度的测量,且适用于光照不足、图像模糊、雨雪天气等情况。 相似文献
92.
Information hiding tends to hide secret information in image area where is rich texture or high frequency, so as to transmit secret information to the recipient without affecting the visual quality of the image and arousing suspicion. We take advantage of the complexity of the object texture and consider that under certain circumstances, the object texture is more complex than the background of the image, so the foreground object is more suitable for steganography than the background. On the basis of instance segmentation, such as Mask R-CNN, the proposed method hides secret information into each object's region by using the masks of instance segmentation, thus realizing the information hiding of the foreground object without background. This method not only makes it more efficient for the receiver to extract information, but also proves to be more secure and robust by experiments. 相似文献
93.
提出一种基于改进Faster R-CNN水母检测与识别算法。首先,建立了包含7种水母的数据集;然后,针对ResNeXt(C=32)用于目标检测时出现计算量较大的问题,在保证精确度的前提下,将分支数C设置为8以降低计算量;最后,为解决水母检测时出现的检测精度低和小个体无法检测的问题,在残差网络中引入膨胀卷积。实验结果表明:该算法较VGG16、ResNet101、ResNeXt(C=32)和ResNeXt(C=8)方法,mAP值分别提高了3.15%、2.09%、3.01%和2.36%;F1-score分别提高了2.53%、1.99%、2.01%和2.31%;loss损失函数收敛值更优,收敛精度趋近于0。P-R曲线、可视化效果分析和水母视频检测的结果证明:该算法的水母检测准确率和水母检测数量明显优于其他算法,检测精度较高,基本可以达到实时监测的要求。 相似文献
94.
目的 达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法 基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息,增强特征网络对纸张缺陷的提取能力;在算法中添加空间和通道的双重注意力机制CBAM,用来提高纸病检测精度;将ROI-Pooling替换为ROI-Align,增强网络的泛化能力。结果 实验结果表明,改进后的算法平均精度达到98%,较原算法平均精度提升了9%。结论 改进后的算法能够充分提取纸病特征信息,有效提高了纸病的检测精度,以及提高了小目标纸病的检测率,降低了错漏检率。 相似文献
95.
高铁4C检测系统可以获取接触网的大量图像,如何利用人工智能技术检测接触网支撑装置的紧固件松动、脱落、变形等故障,是一项迫切需要攻克的技术难题.由于紧固件在整幅图像中占比非常小,解决这一问题的可行方案是先对紧固件识别定位,然后对其进行图像分割,再识别其故障类型.本文提出一种改进的Faster R-CNN算法,可以准确地实现各种紧固件的识别与定位.具体的改进策略为在深度网络中引入一种基于SE模型的注意力机制,加强各通道对有效特征的提取,在Faster R-CNN中以GA-RPN替代RPN网络.实验结果表明,本文所提出的方法对接触网紧固件识别准确率达93.4%以上. 相似文献
96.
97.
98.
99.
为解决目前人工处理分析无人机巡检图像效率低、检测结果受人为因素影响较大的问题,提出了一种图像识别的绝缘子缺失识别方法.首先,对无人机拍摄的图像样本进行了处理,扩充样本集.其次,搭建了绝缘子的检测模型,完成各层网络结构的选择和设计,使用CNN算法实现对绝缘子缺失的检测.随后,构建了绝缘子检测网络,并对各层检测网络参数进行... 相似文献
100.
目的 针对Faster R-CNN (faster region convolutional neural network)模型在肺部计算机断层扫描(computed tomography,CT)图磨玻璃密度影目标检测中小尺寸目标无法有效检测与模型检测速度慢等问题,对Faster R-CNN模型特征提取网络与区域候选网络(region proposal network,RPN)提出了改进方法。方法 使用特征金字塔网络替换Faster R-CNN的特征提取网络,生成特征金字塔;使用基于位置映射的RPN产生锚框,并计算每个锚框的中心到真实物体中心的远近程度(用参数“中心度”表示),对RPN判定为前景的锚框进一步修正位置作为候选区域(region proposal),并将RPN预测的前景/背景分类置信度与中心度结合作为候选区域的排序依据,候选区域经过非极大抑制筛选出感兴趣区域(region of interest,RoI)。将RoI对应的特征区域送入分类回归网络得到检测结果。结果 实验结果表明,在新冠肺炎患者肺部CT图数据集上,本文改进的模型相比于Faster R-CNN模型,召回率(recall)增加了7%,平均精度均值(mean average precision,mAP)增加了3.9%,传输率(frames per second,FPS)由5帧/s提升至9帧/s。特征金字塔网络的引入明显提升了模型的召回率与mAP指标,基于位置映射的RPN显著提升了模型的检测速度。与其他最新改进的目标检测模型相比,本文改进的模型保持了双阶段目标检测模型的高精度,并拉近了与单阶段目标检测模型在检测速度指标上的距离。结论 本文改进的模型能够有效检测到患者肺部CT图的磨玻璃密度影目标区域,对小尺寸目标同样适用,可以快速有效地为医生提供辅助诊断。 相似文献