首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6867篇
  免费   842篇
  国内免费   143篇
电工技术   47篇
综合类   292篇
化学工业   4029篇
金属工艺   156篇
机械仪表   91篇
建筑科学   183篇
矿业工程   53篇
能源动力   177篇
轻工业   527篇
水利工程   17篇
石油天然气   29篇
武器工业   17篇
无线电   487篇
一般工业技术   1583篇
冶金工业   84篇
原子能技术   32篇
自动化技术   48篇
  2024年   24篇
  2023年   126篇
  2022年   90篇
  2021年   260篇
  2020年   256篇
  2019年   244篇
  2018年   290篇
  2017年   263篇
  2016年   260篇
  2015年   303篇
  2014年   376篇
  2013年   474篇
  2012年   374篇
  2011年   406篇
  2010年   329篇
  2009年   401篇
  2008年   357篇
  2007年   430篇
  2006年   450篇
  2005年   336篇
  2004年   343篇
  2003年   302篇
  2002年   243篇
  2001年   174篇
  2000年   156篇
  1999年   83篇
  1998年   110篇
  1997年   67篇
  1996年   44篇
  1995年   40篇
  1994年   37篇
  1993年   30篇
  1992年   33篇
  1991年   50篇
  1990年   30篇
  1989年   29篇
  1988年   8篇
  1987年   11篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有7852条查询结果,搜索用时 390 毫秒
121.
Natural fiber‐reinforced biodegradable polyester composites were prepared from biodegradable polyesters and surface‐untreated or ‐treated abaca fibers (length ca. 5 mm) by melt mixing and subsequent injection molding. Poly(butylene succinate)(PBS), polyestercarbonate (PEC)/poly(lactic acid)(PLA) blend, and PLA were used as biodegradable polyesters. Esterifications using acetic anhydride and butyric anhydride, alkali treatment, and cyanoethylation were performed as surface treatments on the fiber. The flexural moduli of all the fiber‐reinforced composites increased with fiber content. The effect of the surface treatment on the flexural modulus of the fiber‐reinforced composites was not so pronounced. The flexural strength of PBS composites increased with fiber content, and esterification of the fiber by butyric anhydride gave the best result. For the PEC/PLA composites, flexural strength increased slightly with increased fiber content (0–20 wt.‐%) in the case of using untreated fiber, while it increased considerably in the case of using the fiber esterified by butyric anhydride. For the PLA composite, flexural strength did not increase with the fiber reinforcement. The result of soil‐burial tests showed that the composites using untreated fiber have a higher weight loss than both the neat resin and the composites made using acetylated fiber.

Flexural modulus of PBS composites as a function of fiber content.  相似文献   

122.
Nanocomposite powders from polypropylene filled with surface modified and unmodified fumed silica have been prepared from polymer solution to achieve improved mixing and have been forwarded to fiber melt spinning. The surface of the fumed silica was modified with dodecyl alkoxy silanes. Crystallization velocity and viscosity of the PP nanocomposites thereof were determined to ensure good melt spinning processing conditions for all composite compositions. Upon addition of untreated filler particles, a shear thinning and an increased crystallization velocity of the polymer melt was found, while only minor changes were detected in the presence of surface modified fumed silica particles. The composites and the polymer fibers made from these powder composites by melt spinning were mainly characterized by optical microscopy (OM), scanning electron microscopy (SEM), mechanical measurements, differential scanning calorimetry (DSC), and solid‐state NMR. The unmodified fumed silica was found to have a strong influence on the mechanical fiber properties, while the surface modified silica only a small one. Fibers were additionally characterized with respect to the uniformity, the PP crystallinity, moisture absorption, and the water contact angle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 218–227, 2007  相似文献   
123.
The purpose of this study was to research the compatibility and application of polyvinylpyrrolidone (PVP)/chitosan blended polymers. The polymers were synthesized at different weight ratios and tested using techniques such as Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis to evaluate the compatibility of the blended materials. Incompatibility occurred when the quantity of chitosan exceeded 75%. The addition of PVP was beneficial for the thermal stability of chitosan, but resulted in inferior strength performance. Furthermore, the blended polymers did not show a color‐enhancement effect, but did show elevated water absorption, chlorine resistance, and colorfastness. In addition, the treated fabrics with a higher chitosan ratio in the blended polymer had antimicrobial properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 885–891, 2006  相似文献   
124.
The objective of this research was to evaluate the effectiveness of several different methods for controlling the pore size and pore size distribution in activated carbon fibers. Variables studied included fiber shape, activation time, and the addition of small amounts of silver nitrate. Pure isotropic pitch and the same isotropic pitch containing 1 wt.% silver were melt spun to form fibers with round and trilobal cross sections. These fibers were then stabilized, carbonized, and activated in carbon dioxide. Field emission scanning electron microscopy (FE SEM), electron dispersive spectra (EDS), and wavelength dispersive spectra (WDS) were used to monitor the size and distribution of the silver particles in the fibers before and after activation. Each of these analyses showed that the distribution of silver particles was extremely uniform before and after activation. The fibers were also weighed before and after activation to determine the percent burn-off. The BET specific surface areas of the activated fibers were determined from N2 adsorption isotherms measured at −196 °C. The results showed that round and trilobal fibers with equivalent cross-sectional areas yielded similar burn-off values and specific surface areas after activation. Also, activation rates were found to be independent of CO2 flow rate. The porosity of the activated fibers depended on the total time of activation and the cross-sectional area of fibers. The N2 adsorption measurements showed that the activated fibers had extremely high specific surface areas (greater than 3000 m2/g) and high degrees of meso- and macro-porosity. FE SEM was also used to investigate surface texture and size of pore openings on the surfaces of the activated fibers. The photos showed that silver particles generated surface macro- and mesopores, in agreement with the inferences from N2 adsorption measurements.  相似文献   
125.
Natural rubber was reinforced with untreated sisal and oil palm fibers chopped to different fiber lengths. The influence of fiber length on the mechanical properties of the hybrid composites was determined. Increasing the fiber length resulted in a decrease in the properties. The effects of concentration on the rubber composites reinforced with sisal/oil palm hybrid fibers were studied. Increasing the concentration of fibers resulted in a reduction in the tensile strength properties and tear strength but an increase in the modulus of the composites. Fiber breakage analysis was evaluated. The vulcanization parameters, processability characteristics, and stress–strain properties of these composites were analyzed. The extent of fiber alignment and the strength of the fiber–rubber interface adhesion were analyzed from the anisotropic swelling measurements. Scanning electron microscopy studies were performed to analyze the fiber/matrix interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2305–2312, 2004  相似文献   
126.
Three-dimensional (3D) long range well ordered macroporous SiCN ceramics were prepared by infiltrating sacrificial colloidal silica templates with the low molecular weight preceramic polymer, polysilazane. This was followed by a thermal curing step, pyrolysis at 1250 °C in a N2 atmosphere, and finally the removal of the templates by etching with dilute HF. The produced macroporous SiCN ceramics showed high BET surface areas (pore volume) in the range 455 m2/g (0.31 cm3/g)–250 m2/g (0.16 cm3/g) with the pore sizes of 98–578 nm, which could be tailored by controlling the sizes of the sacrificial silica spheres in the range 112–650 nm. The sphere-inversed macropores were interconnected by 50 ± 30 nm windows and 3–5 nm mesopores embedded in the porous SiCN ceramic frameworks, which resulted in a trimodal pore size distribution. The surface of the achieved porous SiCN ceramic was then modified by Pt–Ru nanoparticle depositing under mild chemical conditions.  相似文献   
127.
For the first time, graphite fibers have been electrochemically intercalated with Br that have the same structure and properties as those intercalated from vapor phase Br2. This was accomplished by intercalating pitch-based Thornel® K-1100 graphite fibers at low temperature (near 0 °C) and high currents (2 A) for long times (6 h). The mechanism appears to be that Br is oxidized to aqueous Br2 which, when sufficient local concentration builds up, intercalates the fiber. This was confirmed by intercalating K-1100 fiber in a saturated aqueous Br2 solution without passing an electrical current. The applied voltage does apparently lower the activation energy of the reaction as evidenced by the observation that P-120 and P-100 fibers will not intercalate in aqueous Br2 unless a voltage is applied.  相似文献   
128.
A natural fiber hybrid composite containing equal proportions of kenaf fibers (KFs) and wood flour (WF) as the reinforcements and polypropylene (PP) as the polymer matrix was prepared, and its static and dynamic mechanical properties were compared with KF/PP and WF/PP composites. Static tensile and flexural tests and dynamic mechanical analysis (DMA) were carried out. The hybrid composite exhibited tensile and flexural moduli and strength values closer to those of the KF composite, which indicated a higher reinforcing efficiency of KFs compared with WF. DMA revealed that although the glass‐transition temperature remained unchanged by the replacement of half of the WF by KFs, the α‐transition temperature of the hybrid composite was identical to that of WF composite. The magnitudes of both the α and β (glass) transitions of the hybrid composite were comparable to that of the WF/PP composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 665–672, 2005  相似文献   
129.
130.
Molecular sieve properties of activated carbon fibers modified by cracking treatment with methane are studied herein. The effect of methane treatment on the porous texture of the samples has been studied while varying temperature and time. These materials have been evaluated for their selectivity during CO2 and CH4 separation; their uptakes have been compared with non-treated activated carbon fibers (studied previously), which were considered suitable to be used as molecular sieves. Kinetics of CO2 and CH4 uptake have also been investigated in this research. The treatment produced materials exhibiting fast kinetics and high selectivity during CO2 and CH4 separation; at the same time however, the CO2 uptake capacity was diminished.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号