首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14751篇
  免费   2447篇
  国内免费   843篇
电工技术   71篇
综合类   1128篇
化学工业   8943篇
金属工艺   471篇
机械仪表   166篇
建筑科学   560篇
矿业工程   852篇
能源动力   538篇
轻工业   1251篇
水利工程   179篇
石油天然气   1211篇
武器工业   12篇
无线电   168篇
一般工业技术   1507篇
冶金工业   514篇
原子能技术   345篇
自动化技术   125篇
  2024年   72篇
  2023年   248篇
  2022年   484篇
  2021年   643篇
  2020年   662篇
  2019年   610篇
  2018年   634篇
  2017年   667篇
  2016年   743篇
  2015年   698篇
  2014年   907篇
  2013年   1104篇
  2012年   1492篇
  2011年   1073篇
  2010年   817篇
  2009年   865篇
  2008年   628篇
  2007年   851篇
  2006年   830篇
  2005年   584篇
  2004年   526篇
  2003年   436篇
  2002年   373篇
  2001年   299篇
  2000年   304篇
  1999年   227篇
  1998年   203篇
  1997年   159篇
  1996年   145篇
  1995年   101篇
  1994年   139篇
  1993年   99篇
  1992年   83篇
  1991年   53篇
  1990年   37篇
  1989年   26篇
  1988年   36篇
  1987年   41篇
  1986年   21篇
  1985年   28篇
  1984年   24篇
  1983年   14篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1959年   4篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Two chemically modified starch derivatives, crosslinked amino starch (CAS) and dithiocarbamates modified starch (DTCS), were prepared and used for the removal of Cu(II) from aqueous solutions. CAS was found to be effective for the adsorption of Cu(II), which tended to form a stable amine complex. Adsorption of Cu(II) onto DTCS was higher than that onto CAS. Experiments showed that the adsorption processes of Cu(II) on both CAS and DTCS were endothermic, and followed Freundlich isothermal adsorption. For both adsorbents, dynamic modeling of their adsorption showed that the first‐order reversible kinetic model described the adsorption process. The adsorption rate constants of CAS and DTCS were 1.578 and 10.32 h?1, respectively. From the results of the thermodynamic analysis, free energy ΔG, enthalpy ΔH, and entropy ΔS of the adsorption process were calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3881–3885, 2004  相似文献   
992.
氟元素主要存在于磷矿和萤石等矿物中,这些矿物中都伴生有方解石脉石矿物,在浮选分离的弱酸条件下,矿物表面的F-会部分溶出并吸附到矿物表面,从而影响矿物表面性质。本文研究了F-在方解石表面的吸附及其对方解石表面性质的影响机理。结果表明,在矿浆pH 值为5.5时,F-以化学吸附的方式吸附在方解石表面,随着吸附时间的增加吸附量逐渐增加,90 min时方解石对F-的吸附达到平衡。在油酸钠(NaOL)为捕收剂时,F-的存在会降低方解石表面的疏水性。通过Zeta电位测试、溶液化学计算和X射线光电子能谱仪(XPS)分析表明,F-会和方解石表面的Ca2+反应生成CaF2沉淀,占据方解石表面的Ca位点,降低NaOL在方解石表面的吸附量。  相似文献   
993.
江汝清  余广炜  王玉  黎长江  邢贞娇 《化工进展》2022,41(12):6489-6499
以直接红23染料(DR23)溶液模拟印染废水,对比分析了酸改性前后猪粪生物炭对DR23的吸附特性与机理。通过静态吸附实验考察了DR23溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂添加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学和吸附等温线。研究发现,相比于未改性生物炭(PMB),酸改性后生物炭(PMBacid)结构变得疏松多孔,表面官能团丰富,表现出更优的脱色性能,对DR23的吸附去除率最高可达96.10%,最大饱和吸附量为111.51mg/g,且在经过3次循环再生后,PMBacid对DR23的去除率仍可达到88.31%;此外,pH对PMBacid的脱色吸附性能影响较小。PMBacid对DR23的吸附是一个受反应速率和扩散控制的复杂过程,符合于伪二级动力学模型和Langmuir等温吸附模型;PMBacid对DR23的吸附机理取决于吸附剂的物理化学性质,其孔结构及各官能团通过不同的机制参与了生物炭对DR23的吸附过程。  相似文献   
994.
许瑞雪  程凤茹  马静  邓玉凤  赵俭波 《化工进展》2022,41(12):6549-6556
采用亲水性气相二氧化硅N20和疏水性气相二氧化硅H30复配表面活性剂制备O/W/O型双重乳液,以此为模板,聚合中间相,挥发内相制备聚丙烯酰胺(PAM)多孔微球,并用于染料分子亚甲基蓝的吸附。结果表明:乳液显微镜照片显示水油比对双重乳液的形成有很大的影响,当水油比(O1/W)/O2为(1/2)/2时,可得到稳定的双重乳液;扫描电镜(SEM)照片显示PAM多孔微球基本呈球形,但粒径不均匀,球体表面粗糙,内部为空心结构;激光粒度仪(DLS)结果表明PAM微球平均粒径为356nm,多分散系数(PDI)为0.718,比表面积为230m2/g,粒径分布宽;在吸附温度35℃、吸附时间5min时对亚甲基蓝的吸附率为98.89%,最大吸附率超过99%,在吸附速率和吸附率上均优于传统PAM吸附剂,本研究为染料废水的处理提供了新方法。  相似文献   
995.
为获得铀酰(UO22+)吸附性能高的吸附剂,以蒙脱石(Montmorillonite,MMT)和铁酸盐(ZnFe2O4)为原材料与L-半胱氨酸通过水热反应制备了硫掺杂ZnFe2O4(S-ZnFe2O4)和ZnFe2O4/MMT(S-ZnFe2O4/MMT),采用XRD、FTIR和SEM对S-ZnFe2O4和S-ZnFe2O4/MMT进行了结构表征,研究了pH、接触时间和UO22+初始质量浓度对UO22+吸附效果的影响,结果表明:S-ZnFe2O4呈高分散的纳米颗粒状,并且均匀分布于蒙脱石片层结构表面;S-ZnFe2O4与蒙脱石复合后能明显提高其UO22+吸附性能,最佳吸附pH为6.0;S-ZnFe2O4和S-ZnFe2O4/MMT复合材料对UO22+的最大吸附量分别为51.44 mg/g和68.45 mg/g;吸附符合Langmuir等温吸附模型和伪二阶动力学模型,说明吸附过程属于表面单分子层化学吸附。  相似文献   
996.
铝系成型锂吸附剂性能测试评价与对比   总被引:1,自引:0,他引:1       下载免费PDF全文
张瑞  陆旗玮  林森  于建国 《化工学报》2021,72(6):3053-3062
我国察尔汗盐湖卤水中蕴含丰富的锂资源,但总体品位较低,具有锂浓度低、镁锂比高的特点,导致开发难度很大。吸附法是针对高镁锂比卤水进行提锂的有效方法,其中铝系锂吸附剂具有洗脱无溶损的优势,目前已在盐湖提锂工业中应用。分别对两种工业化铝系锂吸附剂A、B以及实验室自制吸附剂C进行了系统化表征与吸附性能评价。实验结果显示三种成型吸附剂的有效成分均是锂铝层状氢氧化物,在静态吸附条件下,25℃时吸附剂A、B、C对察尔汗老卤中锂的吸附量分别为2.23、0.45、4.90 mg·g-1,吸附动力学均符合拟二级动力学方程,不同温度下吸附等温线拟合结果表明Sips三参数模型能够准确描述三种吸附剂的吸附过程。  相似文献   
997.
为实现稀土尾水中钇离子(Y3+)的回收,探究了好氧颗粒污泥(AGS)对Y3+的吸附-解吸附效果。考察了混合方式、初始Y3+浓度、pH、盐度、铅离子及粒径对AGS吸附效果的影响。相比于搅拌及振荡,曝气混合下AGS具有更好的吸附效果,80%以上的吸附在前10 min完成。当初始Y3+浓度<50 mg/L时,AGS能完全吸附废水中Y3+离子,此后吸附率随着Y3+浓度的增大而减小。H+、Na+和Pb2+会与Y3+竞争AGS上的吸附位点,导致吸附率减小。0.6~1.0 mm的AGS吸附容量最大,2.4~3.0 mm的AGS经人工破碎后吸附容量增大15%。对吸附过程进行动力学和热力学拟合。动力学符合伪二级模型(R2=0.9999),表明化学吸附起主导作用;Webber-Morris方程分析表明颗粒内扩散是影响吸附速率的主要因素。热力学符合Langmuir模型(R2=0.9849),表明吸附过程是一个单分子层吸附过程,拟合得到最大吸附量为Qmax=24.39 mg/gSS。利用XPS对吸附前后AGS进行表征,发现参与吸附官能团有酯基、羧基、氨基,同时与K+进行离子交换,钇在AGS表面的主要化学态是Y2(CO3)3。探究了硝酸及氯化铵对吸附饱和AGS的解吸效果。HNO3的单次解吸附率(99%)明显高于NH4Cl(64%),但五次吸附-解吸附循环后,HNO3组解吸附率降至10%,NH4Cl组解吸附率仍维持在50%。  相似文献   
998.
杨文静  张永祥 《硅酸盐通报》2022,41(6):2191-2200
本文对工业废弃物漂珠进行煅烧改性,制备易回收的吸附材料。以三氯乙烯作为目标污染物,研究改性漂珠吸附污染物的可行性和不同改性参数对去除污染物的影响。通过Box-Behnken设计-响应曲面法以煅烧温度、煅烧时间及粒径为影响因素,建立以三氯乙烯吸附量为响应值的预测模型,对改性漂珠进行XRD、SEM-EDS、BET等表征分析以探讨材料的吸附性能。结果表明,煅烧改性后的漂珠表面疏松多孔,比表面积增大2.4倍左右,影响改性漂珠吸附水中三氯乙烯的因素顺序依次为:煅烧时间>煅烧温度>粒径。模型优化的最优吸附条件为:粒径为0.25~0.38 mm,煅烧温度为640 ℃,煅烧时间为80 min,预测吸附最大值为1 326 μg/g,试验值为1 344 μg/g,两者仅相差1.4%。通过高温煅烧改性的漂珠具备更优良的吸附性能,是一种可大规模生产、以废治废、易回收的环保材料。  相似文献   
999.
颗粒介质的抗红外辐射方式是飞行器尾焰隐身的重要手段之一。为促进颗粒系材料抑制红外辐射的研究和发展,对尾焰隐身进行了系统分析。红外辐射抑制的内涵在于改变红外波段和削弱红外辐射的强度。通过综述粉煤灰基沸石的研究进展、颗粒材料气溶胶抑制红外辐射和喷射方式的研究进展,结合飞行器尾焰辐射组分分析,总结了目前存在的问题和日后的发展方向。粉煤灰作为火力发电厂产生的固体废弃物之一,具有产量高、成本低的特点。提出将粉煤灰在一定条件下合成沸石分子筛,并进一步制备粉煤灰基沸石负载改性二氧化钛材料,将其作为颗粒系应用材料,用于尾焰红外辐射的抑制,可以实现变废为宝,在降低制备成本的前提下保护了环境与人类健康,促进社会的可持续发展。对目前沸石各成分抑制红外辐射效果的研究进行了综述,利用其对高红外辐射气体的强吸附性以及改性二氧化钛的光催化性能进行可行性分析,设计了颗粒吸附和遮蔽喷射结构,充分展示了粉煤灰基沸石的优势,并对该材料在飞行器尾焰隐身方面的应用前景提出展望。  相似文献   
1000.
王傢俊  邓帅  赵睿恺  赵力 《化工进展》2021,40(7):3645-3655
电子级氟化氢(HF)气体的回收具有良好的经济、环境、社会效益,吸附法是最有希望实现回收的方式之一。然而能耗问题限制其进一步发展,如何对其展开节能降耗尚未见专题研究。本文通过对吸附循环能耗等指标的计算,对吸附循环的性能展开了探索性研究。采用分子模拟技术,计算获得HF的吸附平衡等温线数据;建立变温吸附循环数值模型,明确评价循环效能的指标参数;改变吸附温度、压力等运行参数,分析能耗、能效等循环指标的变化趋势,探索降低能耗提升效率的方向。计算结果表明:吸附温度由298K降低到288K,回收单位质量HF能耗由14.0912MJ/kg降低为3.1173MJ/kg,能量利用效率由0.02升高到0.0953;解吸温度由340K升高到350K,能耗降低为12.0037MJ/kg,能量利用效率升高到0.0247。可以看出,降低吸附温度对降低能耗、提升能效的作用更加明显。此外,还得到以下结论:提高进气浓度对各指标均有积极影响;提高吸附压力仅对回收率有较大影响;冷热源与操作温度的差值仅影响产率大小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号