首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6685篇
  免费   1487篇
  国内免费   191篇
电工技术   306篇
综合类   638篇
化学工业   77篇
金属工艺   20篇
机械仪表   534篇
建筑科学   28篇
矿业工程   20篇
能源动力   11篇
轻工业   10篇
水利工程   6篇
石油天然气   17篇
武器工业   200篇
无线电   4944篇
一般工业技术   241篇
冶金工业   11篇
原子能技术   42篇
自动化技术   1258篇
  2024年   47篇
  2023年   138篇
  2022年   204篇
  2021年   154篇
  2020年   333篇
  2019年   373篇
  2018年   306篇
  2017年   308篇
  2016年   285篇
  2015年   373篇
  2014年   483篇
  2013年   431篇
  2012年   600篇
  2011年   568篇
  2010年   433篇
  2009年   396篇
  2008年   349篇
  2007年   470篇
  2006年   394篇
  2005年   302篇
  2004年   279篇
  2003年   247篇
  2002年   202篇
  2001年   152篇
  2000年   119篇
  1999年   75篇
  1998年   54篇
  1997年   47篇
  1996年   56篇
  1995年   54篇
  1994年   39篇
  1993年   21篇
  1992年   18篇
  1991年   14篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有8363条查询结果,搜索用时 31 毫秒
91.
This research has proposed a planar rectangular dipole antenna enclosed in double C‐shaped parasitically slit elements (i.e., radiator element) on a double‐cornered reflector for bandwidth enhancement. In the study, simulations were first carried out to determine the optimal parameters of the radiator element and then a radiator element prototype was fabricated and mounted onto a double‐cornered aluminum reflector. The simulated and measured |S11|<–10 dB of the antenna element covered the frequency ranges of 451–901 MHz (66.6%) and 455–886 MHz (64.3%), respectively. The gain was enhanced by the subsequent deployment of multiple radiator elements to fabricate a four‐element vertically array antenna on an elongated double‐cornered reflector. The simulated and measured |S11|antenna, respectively, covered the 410–991 MHz (82.9%) and 415–886 MHz (72.4%) frequency ranges. The proposed array antenna radiates unidirectionally across the DTV frequency band with a measured front‐to‐back ratio and cross polarization >20 and antenna were 12.8–16.4 dBi and 11.3–15.8 dBi along the 470–862 MHz frequency range. This proposed array antenna is thus suitable for DTV broadcasting transmission. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:466–478, 2016.  相似文献   
92.
The idea of profile miniaturization and performance improvement of a rectangular patch antenna using a metamaterial substrate with large values in the real part of effective relative permeability is proposed in microwave frequency range. The volume profile of the antenna is minimized by tuning the effective relative permeability and thickness of the substrate material. The specific type of metamaterial which can be used as substrate material for the antenna miniaturization purpose is suggested. The proposed idea is validated through finite‐difference time‐domain (FDTD) simulations for sample rectangular patch antennas with metamaterial substrates at the frequency about 10 GHz. Improvement of the power directivity is found for the metamaterial substrate with large value in the real part of effective permeability. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:254–261, 2016.  相似文献   
93.
A microstrip‐fed conventional annular ring slot (ARS) antenna with linear polarization (LP) is initially studied. To generate two orthogonal degenerate modes for circular polarization (CP) radiations, two identical meandering perturbation slots (MPS) are symmetrically loaded into the ARS. By further incorporating a PIN diode switch across each MPS, the proposed antenna can switch between left‐hand CP (LHCP), right‐hand CP (RHCP), and LP. All three polarizations have shown good impedance bandwidth and broad CP bandwidth that can satisfy the wireless local area network (WLAN) 2.4‐GHz operating band (2400–2480 MHz). Furthermore, desirable gains of 1.8–2.0 dBi and 2.40–2.84 dBic are also exhibited at LP and LHCP/RHCP, respectively. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:110–120, 2016.  相似文献   
94.
为了满足X频段机载雷达天线的指标要求,使得矩形平面天线与柱面共形,通过并联侧馈方式进行馈电。在微带共形阵天线的相关理论基础上,阵元采用介电常数2.2,厚度为0.5mm的介质基板。通过HFSS12对微带共形阵天线进行仿真设计并优化。实验结果表明,在X波段内实现了方位面的全向扫描,实测阻抗带宽为9.80-10.20GHz,最大增益可达10dB,全向辐射性能稳定,满足了指标要求。  相似文献   
95.
为克服舰载设备使用稳定平台的可靠性问题,提出并设计了一种脱离稳定平台用于舰载无人机通信的天线伺服系统。该天线伺服系统用于舰艇对舰载无人机的实时跟踪,具有自动跟踪和手动跟踪两种工作模式,并且结构简单、工作稳定、响应速度快。从系统设计原理出发,阐述了系统的机电作动机构、角度跟踪算法、系统硬件电路设计以及伺服电机控制策略。实验表明,该伺服系统能够实时对舰载无人机进行精确跟踪,从而保障舰艇与无人机的有效通信。  相似文献   
96.
针对室内大范围射频识别定位,提出一种双模多频段射频识别复合定位方法。被定位对象同时携带有源和无源两种模式的标签,微波频段阅读器与被低频频段信号激活的有源标签通信,根据有源标签信号区域选通超高频频段读写器天线,以减轻读写器天线之间干扰;以固定时间读写器天线对无源标签的收包次数为定位参数,在被定位对象位置计算过程中分区筛选最大后验概率位置并利用欧式距离修正定位坐标,完成贝叶斯概率定位算法的改进。实验验证表明,本文提出的复合定位方法,不但可以改善大空间定位中读写器天线间的干扰,而且与LANDMARC算法相比较,定位误差降低59.86%。  相似文献   
97.
In this article, a V‐band printed log‐periodic dipole array (PLPDA) antenna with high gain is proposed. The antenna prototype is designed, simulated, fabricated, and tested. Simulation results show that this antenna can operate from 42 to 82 GHz with a fractional impedance bandwidth of 64.5% covering the whole V‐band (50–75 GHz). The antenna has a measured impedance matching bandwidth that starts from 42 to beyond 65 GHz with good agreement between the experimental and simulated results. At 50 and 65 GHz, the antenna has a measured gain of 10.45 and 10.28 dBi, respectively, with a gain variation of 2.6 dBi across the measured frequency range. The antenna prototype exhibits also stable radiation patterns over the operating band. It achieves side‐lobe suppression better than 17.26 dB in the H‐plane and better than 8.95 dB in the E‐plane, respectively. In addition, the cross‐polarization component is 18.5 dB lower than the copolarization with front‐to‐back ratio lower than 24.1 dB in both E‐ and H‐planes across the desired frequency range. Based on a comparison of performance among the reported work in the literature, we can say that the proposed PLPDA antenna is a proper candidate to be used in many applications at V‐band frequency. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:185–193, 2015.  相似文献   
98.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   
99.
A novel ultracompact two‐dimensional (2D) waveguide‐based metasurface is proposed herein and applied for the first time to reduce mutual coupling in antenna array for multiple‐input multiple‐output applications. The unit cell of the proposed 2D waveguide‐based metasurface is ultracompact (8.6 mm × 4.8 mm, equal to λ0/14.2 × λ0/25.5) mainly due to the symmetrical spiral lines etched on the ground. The metasurface exhibits a bandgap with two transmission zeros attributing to the negative permeability in the vicinity of magnetic resonance and the negative permittivity in the vicinity of electric resonance. Taking advantage of these two features, a microstrip antenna array is then designed, fabricated, and measured by embedding an 8 × 1 array of the well‐engineered 2D waveguide‐based metasurface elements between two closely spaced (9.2 mm, equal to λ0/13.3) H‐plane coupled rectangular patches. There is good agreement between the simulated and measured results, indicating that the metasurface effectively reduces antenna mutual coupling by more than 11.18 dB and improves forward gain. The proposed compact structure has one of the highest reported decoupling efficiencies among similar periodic structures with comparable dimensions. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:789–794, 2015.  相似文献   
100.
Artificial neural networks modeling have recently acquired enormous importance in microwave community especially in analyzing and synthesizing of microstrip antennas (MSAs) due to their generalization and adaptability features. A trained neural model estimates response very fast, which is nearly equal to its measured and/or simulated counterpart. Thus, it completely bypasses the repetitive use of conventional models as these models need rediscretization for every minor changes in the geometry, which itself is a time‐consuming exercise. The purpose of this article is to review this emerging area comprehensively for both analyzing and synthesizing of the MSAs. During reviewing process, some untouched cases are also observed, which are essentially required to be resolved for antenna designers. Unique and efficient neural networks‐based solutions are suggested for these cases. The proposed neural approaches are validated by fabricating and characterizing of the prototypes too. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:747–757, 2015.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号