首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2869篇
  免费   703篇
  国内免费   640篇
电工技术   260篇
综合类   303篇
化学工业   177篇
金属工艺   40篇
机械仪表   173篇
建筑科学   30篇
矿业工程   74篇
能源动力   51篇
轻工业   28篇
水利工程   59篇
石油天然气   25篇
武器工业   21篇
无线电   383篇
一般工业技术   227篇
冶金工业   29篇
原子能技术   9篇
自动化技术   2323篇
  2024年   36篇
  2023年   131篇
  2022年   204篇
  2021年   195篇
  2020年   199篇
  2019年   188篇
  2018年   177篇
  2017年   181篇
  2016年   183篇
  2015年   205篇
  2014年   231篇
  2013年   219篇
  2012年   242篇
  2011年   276篇
  2010年   183篇
  2009年   206篇
  2008年   207篇
  2007年   217篇
  2006年   168篇
  2005年   144篇
  2004年   93篇
  2003年   63篇
  2002年   58篇
  2001年   29篇
  2000年   33篇
  1999年   34篇
  1998年   22篇
  1997年   14篇
  1996年   11篇
  1995年   12篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   2篇
  1984年   4篇
  1983年   5篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
排序方式: 共有4212条查询结果,搜索用时 0 毫秒
31.
Weilin Du 《Information Sciences》2008,178(15):3096-3109
Optimization in dynamic environments is important in real-world applications, which requires the optimization algorithms to be able to find and track the changing optimum efficiently over time. Among various algorithms for dynamic optimization, particle swarm optimization algorithms (PSOs) are attracting more and more attentions in recent years, due to their ability of keeping good balance between convergence and diversity maintenance. To tackle the challenges of dynamic optimization, several strategies have been proposed to enhance the performance of PSO, and have gained success on various dynamic optimization problems. But there still exist some issues in dynamic optimization which need to be studied carefully, i.e. the robustness of the algorithm to problems of various dynamic features. In this paper, a new multi-strategy ensemble particle swarm optimization (MEPSO) for dynamic optimization is proposed. In MEPSO, all particles are divided into two parts, denoted as part I and part II, respectively. Two new strategies, Gaussian local search and differential mutation, are introduced into these two parts, respectively. Experimental analyses reveal that the mechanisms used in part I can enhance the convergence ability of the algorithm, while mechanisms used in part II can extend the searching area of the particle population to avoid being trapped into the local optimum, and can enhance the ability of catching up with the changing optimum in dynamic environments. The whole algorithm has few parameters that need to be tuned, and all of them are not sensitive to problems. We compared MEPSO with other PSOs, including MQSO, PHPSO and Standard PSO with re-initialization, on moving peaks Benchmark and dynamic Rastrigin function. The experimental results show that MEPSO has pretty good performance on almost all testing problems adopted in this paper, and outperforms other algorithms when the dynamic environment is unimodal and changes severely, or has a great number of local optima as dynamic Rastrigin function does.  相似文献   
32.
Share price trends can be recognized by using data clustering methods. However, the accuracy of these methods may be rather low. This paper presents a novel supervised classification scheme for the recognition and prediction of share price trends. We first produce a smooth time series using zero-phase filtering and singular spectrum analysis from the original share price data. We train pattern classifiers using the classification results of both original and filtered time series and then use these classifiers to predict the future share price trends. Experiment results obtained from both synthetic data and real share prices show that the proposed method is effective and outperforms the well-known K-means clustering algorithm.  相似文献   
33.
基于集成的年龄估计方法   总被引:3,自引:0,他引:3  
张宇  ZHOU Zhi-Hua 《自动化学报》2008,34(8):997-1000
近十年来, 由于广泛的应用前景, 关于人脸识别的研究得到了广泛的关注. 但目前有一种影响人脸识别技术的因素尚未被研究者所重视, 那就是年龄变化. 而在适用于年龄变化的人脸识别技术中有一个重要的问题, 即年龄估计. 本文基于典型相关分析和代价敏感学习提出了两种年龄估计算法, 并在此基础上利用集成技术来提高年龄估计的准确性. 最终实验结果验证了本文方法的有效性.  相似文献   
34.
Conventional clinical decision support systems are generally based on a single classifier or a simple combination of these models, showing moderate performance. In this paper, we propose a classifier ensemble-based method for supporting the diagnosis of cardiovascular disease (CVD) based on aptamer chips. This AptaCDSS-E system overcomes conventional performance limitations by utilizing ensembles of different classifiers. Recent surveys show that CVD is one of the leading causes of death and that significant life savings can be achieved if precise diagnosis can be made. For CVD diagnosis, our system combines a set of four different classifiers with ensembles. Support vector machines and neural networks are adopted as base classifiers. Decision trees and Bayesian networks are also adopted to augment the system. Four aptamer-based biochip data sets including CVD data containing 66 samples were used to train and test the system. Three other supplementary data sets are used to alleviate data insufficiency. We investigated the effectiveness of the ensemble-based system with several different aggregation approaches by comparing the results with single classifier-based models. The prediction performance of the AptaCDSS-E system was assessed with a cross-validation test. The experimental results show that our system achieves high diagnosis accuracy (>94%) and comparably small prediction difference intervals (<6%), proving its usefulness in the clinical decision process of disease diagnosis. Additionally, 10 possible biomarkers are found for further investigation.  相似文献   
35.
一种基于Vague-Sigmoid核的支持向量机研究   总被引:2,自引:0,他引:2  
Sigmoid核最初起源于神经网络,目前在支持向量机中也得到了广泛应用,但由于核矩阵的非半正定性,其应用受到一些限制.研究表明Sigmoid核可以用简单的模糊三角隶属函数来近似替代,使得其学习效率能进一步提高.本文首先分析模糊支持向量机的特性,将模糊理论用于支持向量机的核中,并在此基础上提出了基于Vague-Sigmoid核函数的支持向量分类器.该方法充分结合了Vague集的自身优势,用基于Vague集的相似度量来代替了常规中的样本间的点积计算方法.将文中提出的方法应用于标准数据集中,并与传统的Sigmoid核方法、Fuzzy -Sigmoid核方法进行了实验分析, 实验表明文中提出的方法在不损失精度的情况下,能较好的提高算法的执行效率,取得了较好的实验结果;同时也表明在支持向量机中能利用Vague-S igmoid核取代替传统的Sigmoid核,从而减少对Sigmoid核的限制.  相似文献   
36.
一种基于类支持度的增量贝叶斯学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
丁厉华  张小刚 《计算机工程》2008,34(22):218-219
介绍增量贝叶斯分类器的原理,提出一种基于类支持度的优化增量贝叶斯分类器学习算法。在增量学习过程的样本选择问题上,算法引入一个类支持度因子λ,根据λ的大小逐次从测试样本集中选择样本加入分类器。实验表明,在训练数据集较小的情况下,该算法比原增量贝叶斯分类算法具有更高的精度,能大幅度减少增量学习样本优选的计算时间。  相似文献   
37.
提出一种基于极坐标Log Gabor小波的纹理分析方法,该方法突破了Gabor小波的带宽限制,仅采用较少的极坐标Log Gabor滤波器,即实现了准确地纹理分割.实验表明,在频谱覆盖相同的情况下,极坐标Log Gabor小波具有较Gabor小波更好的性能和更高的效率;此外,实验中针对多通道滤波方法对最小距离判别方法的改进,也取得了较好的效果,这为基于小波分解的分类问题提供了一个新的思路.  相似文献   
38.
该文针对集成方法实现支持向量机大规模训练的相关问题进行了深入研究,提出了一种称为"DD-Boosting"的成员分类器产生算法,能够在大规模数据集情况下利用类似Boosting技术产生稳定、高泛化性能的成员分类器。在此基础上,推导出基于OCSVM的分类器集成模型,实验仿真表明,该集成模型能够获得比主投票方法更好的泛化性能,且通过调整正则参数避免了训练过拟合问题。  相似文献   
39.
Network traffic classification based on ensemble learning and co-training   总被引:4,自引:0,他引:4  
Classification of network traffic is the essential step for many network researches. However,with the rapid evolution of Internet applications the effectiveness of the port-based or payload-based identifi-cation approaches has been greatly diminished in recent years. And many researchers begin to turn their attentions to an alternative machine learning based method. This paper presents a novel machine learning-based classification model,which combines ensemble learning paradigm with co-training tech-niques. Compared to previous approaches,most of which only employed single classifier,multiple clas-sifiers and semi-supervised learning are applied in our method and it mainly helps to overcome three shortcomings:limited flow accuracy rate,weak adaptability and huge demand of labeled training set. In this paper,statistical characteristics of IP flows are extracted from the packet level traces to establish the feature set,then the classification model is created and tested and the empirical results prove its feasibility and effectiveness.  相似文献   
40.
多分类器集成是手写体汉字识别领域的新方向。本文提出的多分类器集成方法通过改进的欧氏距离分类器将待识别汉字分类到某个粗分结果集中,然后根据粗分结果集选择1-N(one-against-rest)的SVM分类器对待识别汉字进行细分,最后用贝叶斯集成两级分类器。实验对国标一级汉字中的1034个手写汉字进行识别,证明了方案的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号