首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11748篇
  免费   2739篇
  国内免费   2497篇
电工技术   1155篇
技术理论   2篇
综合类   1366篇
化学工业   400篇
金属工艺   161篇
机械仪表   515篇
建筑科学   390篇
矿业工程   197篇
能源动力   181篇
轻工业   287篇
水利工程   168篇
石油天然气   151篇
武器工业   85篇
无线电   1681篇
一般工业技术   653篇
冶金工业   151篇
原子能技术   47篇
自动化技术   9394篇
  2024年   105篇
  2023年   315篇
  2022年   512篇
  2021年   576篇
  2020年   640篇
  2019年   594篇
  2018年   598篇
  2017年   644篇
  2016年   731篇
  2015年   765篇
  2014年   936篇
  2013年   918篇
  2012年   1197篇
  2011年   1223篇
  2010年   994篇
  2009年   952篇
  2008年   1028篇
  2007年   1062篇
  2006年   713篇
  2005年   585篇
  2004年   442篇
  2003年   310篇
  2002年   260篇
  2001年   186篇
  2000年   144篇
  1999年   125篇
  1998年   79篇
  1997年   54篇
  1996年   50篇
  1995年   45篇
  1994年   29篇
  1993年   26篇
  1992年   21篇
  1991年   16篇
  1990年   14篇
  1989年   18篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   12篇
  1984年   10篇
  1983年   8篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
通过分析聚类分析在星座图中的应用,得出星座图聚类分析对高阶QAM短突发信号的类内调制识别不适用的结论,从而提出了星座图聚类调制识别法在短突发信号的改进方法。将星座点在坐标轴上投影,利用投影点进行聚类分析,可以提高星座聚类算法在高阶QAM短突发信号调制识别中的性能。仿真结果表明,在短突发信号的条件下,该方法具有良好的识别效果。  相似文献   
152.
胡正平 《信号处理》2008,24(1):105-107
支持向量机通过随机选择标记的训练样本进行有监督学习,随着信息容量的增加和数据收集能力的提高,这需要耗费大量的标记工作量,给实际应用带来不少困难.本文提出了基于最佳样本标记的主动支持向量机学习策略:首先利用无监督聚类选择一个小规模的样本集进行标记,然后训练该标记样本集得到一个初始SVM分类器,然后利用该分类器主动选择最感兴趣的无标记样本进行标记,逐渐增加标记样本的数量,并在此基础上更新分类器,反复进行直到得到最佳性能的分类器.实验结果表明在基本不影响分类精度的情况下,主动学习选择的标记样本数量大大低于随机选择的标记样本数量,这大大降低了标记的工作量,而且训练速度同样有所提高.  相似文献   
153.
Application of a New Fuzzy Clustering Algorithm in Intrusion Detection   总被引:1,自引:0,他引:1  
This paper presents a new Section Set Adaptive FCM algorithm. The algorithm solved the shortcomings of localoptimality, unsure classification and clustering numbers ascertained previously. And it improved on the architecture of FCM al-gorithm, enhanced the analysis for effective clustering. During the clustering processing, it may adjust clustering numbers dy-namically. Finally, it used the method of section set decreasing the time of classification. By experiments, the algorithm can im-prove dependability of clustering and correctness of classification.  相似文献   
154.
M. Orlinski  N. Filer 《Ad hoc Networks》2013,11(5):1641-1654
Cluster detection has been widely applied to the problem of efficient data delivery in highly dynamic mobile ad hoc networks. By grouping participants who meet most often into clusters, hierarchical structures in the network are formed which can be used to efficiently transfer data between the participants. However, data delivery algorithms which rely on clusters can be inefficient in some situations. In the case of dynamic networks formed by encounters between humans, sometimes called Pocket Switched Networks (PSNs), cluster based data delivery methods may see a drop in efficiency if obsolete cluster membership persists despite changes to behavioural patterns. Our work aims to improve the relevance of clusters to particular time frames, and thus improve the performance of cluster based data delivery algorithms in PSNs. Furthermore, we will show that by detecting spatio-temporal clusters in PSNs, we can now improve on the data delivery success rates and efficiency of data delivery algorithms which do not use clustering; something which has been difficult to demonstrate in the past.  相似文献   
155.
In most spectral clustering approaches, the Gaussian kernel‐based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state‐of‐the‐art methods on both synthetic and real‐world data. The experiment results show the superiority of the new similarity: 1) The max‐flow‐based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.  相似文献   
156.
This paper investigates the resource allocation in a massively deployed user cognitive radio enabled non-orthogonal multiple access (CR-NOMA) network considering the downlink scenario. The system performance deteriorates with the number of users who are experiencing similar channel characteristics from the base station (BS) in NOMA. To address this challenge, we propose a framework for maximizing the system throughput that is based on one-to-one matching game theory integrated with the machine learning technique. The proposed approach is decomposed to solve users clustering and power allocation subproblems. The selection of optimal cluster heads (CHs) and their associated cluster members is based on Gale-Shapley matching game theoretical model with the application of Hungarian method. The CHs can harvest energy from the BS and transfer their surplus power to the primary user (PU) through wireless power transfer. In return, they are allowed to access the licensed band for secondary transmission. The power allocation to the users intended for power conservation at CHs is formulated as a probabilistic constraint, which is then solved by employing the support vector machine (SVM) algorithm. The simulation results demonstrate the efficacy of our proposed schemes that enable the CHs to transfer the residual power while ensuring maximum system throughput. The effects of different parameters on the performance are also studied.  相似文献   
157.
With the evolution of technology, many modern applications like habitat monitoring, environmental monitoring, disaster prediction and management, and telehealth care have been proposed on wireless sensor networks (WSNs) with Internet of Things (IoT) integration. However, the performance of these networks is restricted because of the various constraints imposed due to the participating sensor nodes, such as nonreplaceable limited power units, constrained computation, and limited storage. Power limitation is the most severe among these restrictions. Hence, the researchers have sought schemes enabling energy-efficient network operations as the most crucial issue. A metaheuristic clustering scheme is proposed here to address this problem, which employs the differential evolution (DE) technique as a tool. The proposed scheme achieves improved network performance via the formulation of load-balanced clusters, resulting in a more scalable and adaptable network. The proposed scheme considers multiple parameters such as nodes' energy level, degree, proximity, and population for suitable network partitioning. Through various simulation results and experimentation, it establishes its efficacy over state-of-the-art schemes in respect of load-balanced cluster formation, improved network lifetime, network resource utilization, and network throughput. The proposed scheme ensures up to 57.69%, 33.16%, and 57.74% gains in network lifetime, energy utilization, and data packet delivery under varying network configurations. Besides providing the quantitative analysis, a detailed statistical analysis has also been performed that describes the acceptability of the proposed scheme under different network configurations.  相似文献   
158.
李坤然  谭骏珊 《信息技术》2008,32(3):97-99,105
提出使用下降迭代算法对数值聚类分析技术进行优化.下降迭代通过设定函数,给出初始假设解,然后按照某种规则依次找到最优解.首先介绍常用聚类算法,从而引出下降迭代法聚类.通过实验证明了下降迭代算法对数值聚类优化的可行性.  相似文献   
159.
正交幅度调制(Quadrature Amplitude Modulation,QAM)信号的调制模式识别一直以来是人们研究的热点,通过星座图来进行调制模式识别也是一种常见的方法。然而,大多数调制模式识别算法会受到频偏和相偏的干扰,因此提出了一种幅度相位分步识别的QAM识别算法来识别调制模式。先利用卷积神经网络(Convolutional Neural Networks,CNN)识别出未消除频偏相偏的QAM星座图的幅度层数,对信号进行第一次分类;再检测每个信号点的瞬时相位进行差分,得到每个点之间的相位跳变幅度;经过减法聚类确定相位跳变次数,由此对信号在相位上进行二次分类,最后识别出QAM信号的调制模式。该方法虽然步骤比传统方法繁琐,但是不依赖于信号的频偏消除和相偏消除,能够起到很好的抗频偏作用。此外,因为没有频偏消除和相偏消除的步骤,所以使得信号不至于在频偏消除和相偏消除等预处理过程中损失信息量。经过试验,这种方法在识别率上比传统的神经网络识别方法在低信噪比下有更好的识别率。  相似文献   
160.
In response to the problems traditional multi-view document clustering methods separate the multi-view document representation from the clustering process and ignore the complementary characteristics of multi-view document clustering,an iterative algorithm for complementary multi-view document clustering——CMDC was proposed,in which the multi-view document clustering process and the multi-view feature adjustment were conducted in a mutually unified manner.In CMDC algorithm,complementary text documents were selected from the clustering results to aid adjusting the contribution of view features via learning a local measurement metric of each document view.The complementary text document of the results among the dimensionality clusters was selected by CMDC,and used to promote the feature tuning of the clusters.The partition consistency of the multi-dimensional document clustering was solved by the measure consistency of the dimensions.Experimental results show that CMDC effectively improves multi-dimensional clustering performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号