首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   46篇
  国内免费   22篇
电工技术   3篇
综合类   7篇
建筑科学   1篇
轻工业   6篇
无线电   10篇
一般工业技术   3篇
冶金工业   24篇
自动化技术   116篇
  2025年   16篇
  2024年   34篇
  2023年   30篇
  2022年   34篇
  2021年   18篇
  2020年   6篇
  2019年   4篇
  2015年   1篇
  2013年   1篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
91.
在DMN的基础上提出一种跨模态目标实例分割方法,旨在结合自然语言表达,利用不同模态信息从图像中分割所描述对象。在视觉特征提取网络DPN92中引入CBAM注意力机制,关注空间和通道上的有用信息;将BN层替换为联合BN和FRN的正则化,减少批次量和通道数对提取特征网络性能的影响,提高网络的泛化能力;在三个通用数据集ReferIt、GRef和UNC上进行仿真实验。实验结果显示,提出的引入CBAM注意力机制和联合正则化改进模型在mIou评价指标上,ReferIt和GRef上分别提升了1.85和0.52个百分点,在UNC三个验证集上分别提升了1.98、2.22和2.75个百分点。表明改进模型在预测准确度方面优于已有模型。  相似文献   
92.

协同分析和处理跨模态数据一直是现代人工智能领域的难点和热点,其主要挑战是跨模态数据具有语义和异构鸿沟. 近年来,随着深度学习理论和技术的快速发展,基于深度学习的算法在图像和文本处理领域取得了极大的进步,进而产生了视觉问答(visual question answering, VQA)这一课题. VQA系统利用视觉信息和文本形式的问题作为输入,得出对应的答案,核心在于协同理解和处理视觉、文本信息. 因此,对VQA方法进行了详细综述,按照方法原理将现有的VQA方法分为数据融合、跨模态注意力和知识推理3类方法,全面总结分析了VQA方法的最新进展,介绍了常用的VQA数据集,并对未来的研究方向进行了展望.

  相似文献   
93.
基于草图的跨域图像检索任务以手绘草图为输入,从彩色图像数据库中检索得到最相似的图像。为了在基于草图的图像检索任务中,更好地融合来自草图和彩色图像的特征,本文提出了用于草图检索任务的混合跨域神经网络,由草图特征提取分支与异构特征融合的彩色图像网络分支组成。该网络提取获得手绘草图、正负样本彩色图像及其边缘轮廓的特征表示,并将彩色图像及其草图近似图(即彩色图像的边缘轮廓)进行特征融合,作为彩色图像特征,弥补了手绘草图与彩色图像直接匹配的跨域差距。通过对网络模型的参数与网络结构等方面探索,进一步优化草图检索算法。在Flickr15K草图检索数据集上的实验结果表明,本文提出的方法优于当前其他先进的草图检索算法,在检索平均精确度这个客观指标上达到了0.584 8,相比其他方法中指标最优的值提升了0.052 2。  相似文献   
94.
    
In recent years, the development of deep learning has further improved hash retrieval technology. Most of the existing hashing methods currently use Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to process image and text information, respectively. This makes images or texts subject to local constraints, and inherent label matching cannot capture fine-grained information, often leading to suboptimal results. Driven by the development of the transformer model, we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs. Specifically, we use a BERT network to extract text features and use the vision transformer as the image network of the model. Finally, the features are transformed into hash codes for efficient and fast retrieval. We conduct extensive experiments on Microsoft COCO (MS-COCO) and Flickr30K, comparing with baselines of some hashing methods and image-text matching methods, showing that our method has better performance.  相似文献   
95.
跨模态检索使用一种模态的数据作为查询条件,在另一种模态中检索语义相关的数据.绝大多数的跨模态检索方法仅适用于模态完备条件下的跨模态检索场景,它们对缺失模态数据的处理能力仍有待提升,为此,提出一种典型概念驱动的模态缺失深度跨模态检索模型.首先提出一个融合多模态预训练网络的多模态Transformer模型,能在模态缺失的情况下充分地进行多模态细粒度语义交互,提取多模态融合语义并构造跨模态子空间,同时引导学习生成多模态典型概念;然后使用典型概念作为跨注意力的键和值来驱动模态映射网络的训练,使模态映射网络可以自适应地感知查询模态数据中隐含的多模态语义概念,生成跨模态检索特征,充分地保留训练提取的多模态融合语义.在Wikipedia,Pascal-Sentence,NUS-WIDE和XmediaNet这4个基准跨模态检索数据集上的实验结果表明,所提模型比文中对比模型的平均准确率均值分别提高了1.7%,5.1%,1.6%和5.4%.该模型的源代码可在https://gitee.com/MrSummer123/CPCMR网站获得.  相似文献   
96.
针对现有的基于公共子空间的跨模态检索方法对不同检索任务的差异性、检索模态的语义一致性考虑不足的问题,提出一种联合线性判别和图正则的任务导向型跨模态检索方法.该方法在一个联合学习框架中为不同的检索任务构建不同的映射机制,将不同模态的数据映射到公共子空间中以进行相似性度量;学习过程中结合相关性分析和单模态语义回归,保留成对数据间的相关性以及增强查询模态样本的语义准确性,同时利用线性判别分析保证检索模态样本的语义一致性;还为不同模态的数据构建局部近邻图以保留结构信息,从而提升跨模态检索的性能.在Wikipedia和Pascal Sentence这2个跨模态数据集上的实验结果表明,该方法在不同检索任务上的平均mAP值比12种现有方法分别提升了1.0%~16.0%和1.2%~14.0%.  相似文献   
97.
跨模态哈希检索以其较高的检索效率和较低的存储成本,在跨模态检索领域受到了广泛的关注.现有的跨模态哈希大多直接从多模态数据中学习哈希码,不能充分利用数据的语义信息,因此无法保证数据低维特征在模态间的分布一致性,解决这个问题的关键之一是要准确地度量多模态数据之间的相似度.为此,提出一种基于对抗投影学习的哈希(adversarial projection learning based Hashing for cross-modal retrieval,APLH)方法用于跨模态检索.利用对抗训练学习来自不同模态的低维特征,并保证低维特征在模态间的分布一致性.在此基础上,利用跨模态投影匹配约束(cross-modal projection matching,CMPM),最小化特征投影匹配分布和标签投影匹配分布之间的KL(Kullback-Leibler)散度,利用标签信息使数据低维特征之间的相似度结构与语义空间中的相似度结构趋于一致.此外,在哈希码学习阶段,引入加权余弦三元组损失进一步利用数据的语义信息;且为减小哈希码的量化损失,使用离散优化的方法优化哈希函数.在3个跨模态数据集MIRFlickr25K,NUS-WIDE,Wikipedia上,以不同码位计算mAP,且所提方法的mAP值均优于其他算法,验证了其在跨模态哈希检索上的优越性、鲁棒性以及CMPM的有效性.  相似文献   
98.
张成  万源  强浩鹏 《计算机应用》2021,41(9):2523-2531
跨模态哈希因其低存储花费和高检索效率得到了广泛的关注.现有的大部分跨模态哈希方法需要额外的手工标签来提供实例间的关联信息,然而,预训练好的深度无监督跨模态哈希方法学习到的深度特征同样能提供相似信息;且哈希码学习过程中放松了离散约束,造成较大的量化损失.针对以上两个问题,提出基于知识蒸馏的深度无监督离散跨模态哈希(DUD...  相似文献   
99.
甲骨文字图像可以分为拓片甲骨文字与临摹甲骨文字两类. 拓片甲骨文字图像是从龟甲、兽骨等载体上获取的原始拓片图像, 临摹甲骨文字图像是经过专家手工书写得到的高清图像. 拓片甲骨文字样本难以获得, 而临摹文字样本相对容易获得. 为了提高拓片甲骨文字识别的性能, 本文提出一种基于跨模态深度度量学习的甲骨文字识别方法, 通过对临摹甲骨文字和拓片甲骨文字进行共享特征空间建模和最近邻分类, 实现了拓片甲骨文字的跨模态识别. 实验结果表明, 在拓片甲骨文字识别任务上, 本文提出的跨模态学习方法比单模态方法有明显的提升, 同时对新类别拓片甲骨文字也能增量识别.  相似文献   
100.
    
In the era of big data rich in We Media, the single mode retrieval system has been unable to meet people’s demand for information retrieval. This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes: A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network (CMHR-DRN). The model construction is divided into two stages: The first stage is the feature extraction of different modal data, including the use of Deep Residual Network (DRN) to extract the image features, using the method of combining TF-IDF with the full connection network to extract the text features, and the obtained image and text features used as the input of the second stage. In the second stage, the image and text features are mapped into Hash functions by supervised learning, and the image and text features are mapped to the common binary Hamming space. In the process of mapping, the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval. In training the model, adaptive moment estimation (Adam) is used to calculate the adaptive learning rate of each parameter, and the stochastic gradient descent (SGD) is calculated to obtain the minimum loss function. The whole training process is completed on Caffe deep learning framework. Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH, CMDN and CMSSH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号