全文获取类型
收费全文 | 422篇 |
免费 | 61篇 |
国内免费 | 20篇 |
专业分类
电工技术 | 14篇 |
综合类 | 32篇 |
化学工业 | 16篇 |
金属工艺 | 2篇 |
机械仪表 | 41篇 |
建筑科学 | 19篇 |
矿业工程 | 9篇 |
能源动力 | 17篇 |
轻工业 | 33篇 |
水利工程 | 6篇 |
石油天然气 | 7篇 |
武器工业 | 2篇 |
无线电 | 52篇 |
一般工业技术 | 39篇 |
冶金工业 | 9篇 |
原子能技术 | 7篇 |
自动化技术 | 198篇 |
出版年
2025年 | 4篇 |
2024年 | 15篇 |
2023年 | 15篇 |
2022年 | 11篇 |
2021年 | 20篇 |
2020年 | 18篇 |
2019年 | 18篇 |
2018年 | 9篇 |
2017年 | 17篇 |
2016年 | 22篇 |
2015年 | 26篇 |
2014年 | 20篇 |
2013年 | 33篇 |
2012年 | 27篇 |
2011年 | 30篇 |
2010年 | 25篇 |
2009年 | 35篇 |
2008年 | 27篇 |
2007年 | 17篇 |
2006年 | 8篇 |
2005年 | 14篇 |
2004年 | 14篇 |
2003年 | 8篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 7篇 |
1999年 | 8篇 |
1998年 | 4篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1955年 | 1篇 |
排序方式: 共有503条查询结果,搜索用时 15 毫秒
51.
Yanpeng Liu Eun Jung Yu Wang Yi Zheng Eun Ji Park Sung Min Cho Kian Ping Loh 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(5):944-949
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°. 相似文献
52.
53.
A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO2 concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO2 emissions until 2200 are derived. Using the coupled gas–cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO2 concentration might increase up to about 480 ppm (445–540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 °C (0.9–1.6 °C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. 相似文献
54.
In this paper, a multimode process monitoring strategy based on improved just-in-time-learning associated with locality preserving projections (IJITL-LPP) is proposed. First, raw data are projected into the feature space using locality preserving projections (LPP). Second, IJITL searches for similar samples of the query sample in the feature space by introducing a variational inference Gaussian mixture model (VIGMM). Finally, the new statistic named average distance is created to complete process monitoring. In the IJITL, the introduced VI can automatically determine the number of modes, thereby accelerating the efficiency of selecting similar samples. In the process monitoring phase, the average distance can reduce the impact of different mode dispersion on fault detection. In addition, LPP can render the model less sensitive to outliers. Compared with principal component analysis (PCA), LPP, K nearest neighbour rules, Gaussian mixture model (GMM), K-means based-PCA, and just-in-time-learning (JITL)-based LPP, the proposed method has better performance in a numerical case, the Tennessee Eastman process, and the semiconductor etching process. 相似文献
55.
Jian Guo Yuan Liu Yue Ma Enbo Zhu Shannon Lee Zixuan Lu Zipeng Zhao Changhao Xu Sung‐Joon Lee Hao Wu Kirill Kovnir Yu Huang Xiangfeng Duan 《Advanced materials (Deerfield Beach, Fla.)》2018,30(21)
The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2 V?1 s?1 with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W?1 and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs. 相似文献
56.
Jian Peng Youqun Lai Yuanyuan Chen Jun Xu Liping Sun Jian Weng 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(15)
The instability of few‐layer black phosphorus (FL‐BP) hampers its further applications. Here, it can be demonstrated that the instability of FL‐BP can also be the advantage for application in biosensor. First, gold nanoparticle/FL‐BP (BP‐Au) hybrid is facilely synthesized by mixing Au precursor with FL‐BP. BP‐Au shows outstanding catalytic activity (K = 1120 s?1 g?1) and low activation energy (17.53 kJ mol?1) for reducing 4‐nitrophenol, which is attributed to the electron‐reservoir and electron‐donor properties of FL‐BP, and synergistic interaction of Au nanoparticles and FL‐BP. Oxidation of FL‐BP after catalytic reaction is further confirmed by transmission electron microscope, X‐ray photoelectron spectroscopy, and zeta potentials. Second, the catalytic activity of BP‐Au can be reversibly switched from “inactive” to “active” upon treatment with antibody and antigen in solution, thus providing a versatile platform for label‐free colorimetric detection of biomarkers. The sensor shows a wide detection range (1 pg mL?1 to –10 µg mL?1), high sensitivity (0.20 pg mL?1), and selectivity for detecting carcinoembryonic antigen (CEA). Finally, the biosensor has been used to detect CEA in colon and breast cancer clinical samples with satisfactory results. Therefore, the instability of BP can also be the advantage for application in detecting cancer biomarker in clinic. 相似文献
57.
Crispness is regarded as a significant quality index for apples. Currently, destructive sensory evaluation is the accepted method used to detect apple crispness, making it essential to develop a method that can detect apple crispness in a nondestructive manner. In this study, spectroscopy was proposed as the nondestructive technique for detecting apples' crispness, ultimately obtaining a spectral reflectance curve between 450 nm and 1,000 nm. In order to simplify and improve modeling efficiency, successive projections algorithm (SPA) and x‐loading weights (x‐LW) methods were used to select the most effective wavelengths. Partial least squares (PLS) algorithm, radial basis neural networks (RBNN), and multilayer perceptron neural networks (MLPNN) methods were used to establish the models and to predict the crispness of “Fuji” and “Qinguan” apple varieties. Based on the full wavelength (FW), the prediction accuracy of the PLS model for “Fuji” and “Qinguan” apple varieties was 92.05% and 95.87%, respectively. The effective wavelengths selected via SPA for the “Fuji” apple variety were 450.41 nm, 476.80 nm, 677.75 nm, and 750.72 nm, and the effective wavelengths selected via x‐LW for the “Qinguan” apple variety were 542.51 nm, 544.79 nm, 676.96 nm, and 718.29 nm. The prediction accuracy of the PLS model based on effective wavelengths for “Fuji” and “Qinguan” apple varieties reached 91.31% and 96.41%, respectively. Compared with the RBNN model, the MLPNN model achieved better prediction results for both “Fuji” and “Qinguan” apples, with the prediction accuracy reaching 97.8% and 99.9%, respectively. Based on the above findings, effective wavelength selection and MLPNN modeling were able to detect apple crispness with the highest accuracy. Overall, it can be concluded that the less effective wavelengths are conducive to developing an instrument for crispness detection. 相似文献
58.
59.
Nomana Kalsoom Muhammad Zafar Mushtaq Ahmad Shazia Sultana Anwer Usma Asma Jabeen 《Microscopy research and technique》2019,82(7):1012-1020
In present study, the schizocarp morphology of 14 species belonging to Apiaceae family has been investigated. Light microscopy (LM) and scanning electron microscopy (SEM) have been utilized to highlight qualitative and quantitative features of studied species. Variations have been observed in macro‐ and micro‐morphological features such as color, shape, symmetry, length, width, apex, epicuticular projections, surface patterns, anticlinal, and periclinal wall patterns. Schizocarp shapes observed were oval, round, triangular, linear, elliptic, and globose. Fruit was either homomorphic or heteromorphic. Crystalloids, stellate hair, multicellular spines, and platelets were mostly observed epicuticular projections. Surface patterns on the fruit surface were striate, rugulate‐striate, reticulate, and striato‐knotted. Both macro‐ and micro‐morphological characters can serve as an important tool in classifying Apiaceae family at various taxonomic ranks. Substantial variations observed can assist as useful constraints at various taxonomic levels as they provide reliable and constant details. Disparities observed in schizocarp features can pave a path for Apiaceae family classification based on phylogenetic and molecular studies. 相似文献
60.