首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   23篇
  国内免费   1篇
综合类   3篇
化学工业   113篇
金属工艺   2篇
机械仪表   4篇
建筑科学   2篇
能源动力   1篇
轻工业   79篇
水利工程   2篇
无线电   4篇
一般工业技术   7篇
冶金工业   3篇
自动化技术   23篇
  2024年   1篇
  2023年   9篇
  2022年   34篇
  2021年   29篇
  2020年   12篇
  2019年   14篇
  2018年   9篇
  2017年   6篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   15篇
  2003年   13篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
41.
Although Slavic populations account for over 4.5% of world inhabitants, no centralised, open-source reference database of genetic variation of any Slavic population exists to date. Such data are crucial for clinical genetics, biomedical research, as well as archeological and historical studies. The Polish population, which is homogenous and sedentary in its nature but influenced by many migrations of the past, is unique and could serve as a genetic reference for the Slavic nations. In this study, we analysed whole genomes of 1222 Poles to identify and genotype a wide spectrum of genomic variation, such as small and structural variants, runs of homozygosity, mitochondrial haplogroups, and de novo variants. Common variant analyses showed that the Polish cohort is highly homogenous and shares ancestry with other European populations. In rare variant analyses, we identified 32 autosomal-recessive genes with significantly different frequencies of pathogenic alleles in the Polish population as compared to the non-Finish Europeans, including C2, TGM5, NUP93, C19orf12, and PROP1. The allele frequencies for small and structural variants, calculated for 1076 unrelated individuals, are released publicly as The Thousand Polish Genomes database, and will contribute to the worldwide genomic resources available to researchers and clinicians.  相似文献   
42.
Similar to other malignancies, TCGA network efforts identified the detailed genomic picture of skin melanoma, laying down the basis of molecular classification. On the other hand, genome-wide association studies discovered the genetic background of the hereditary melanomas and the susceptibility genes. These genetic studies helped to fine-tune the differential diagnostics of malignant melanocytic lesions, using either FISH tests or the myPath gene expression signature. Although the original genomic studies on skin melanoma were mostly based on primary tumors, data started to accumulate on the genetic diversity of the progressing disease. The prognostication of skin melanoma is still based on staging but can be completed with gene expression analysis (DecisionDx). Meanwhile, this genetic knowledge base of skin melanoma did not turn to the expected wide array of target therapies, except the BRAF inhibitors. The major breakthrough of melanoma therapy was the introduction of immune checkpoint inhibitors, which showed outstanding efficacy in skin melanoma, probably due to their high immunogenicity. Unfortunately, beyond BRAF, KIT mutations and tumor mutation burden, no clinically validated predictive markers exist in melanoma, although several promising biomarkers have been described, such as the expression of immune-related genes or mutations in the IFN-signaling pathway. After the initial success of either target or immunotherapies, sooner or later, relapses occur in the majority of patients, due to various induced genetic alterations, the diagnosis of which could be developed to novel predictive genetic markers.  相似文献   
43.
44.
As genomes evolve over hundreds of millions years, the chromosomes become rearranged, with segments of some chromosomes inverted, while other chromosomes reciprocally exchange chunks from their ends. These rearrangements lead to the scrambling of the elements of one genome with respect to another descended from a common ancestor. Multidisciplinary work undertakes to mathematically model these processes and to develop statistical analyses and mathematical algorithms to understand the scrambling in the chromo...  相似文献   
45.
Polyhydroxyalkanoates (PHA) are promising biodegradable and biocompatible bioplastics, and extensive knowledge of the employed bacterial strain’s metabolic capabilities is necessary in choosing economically feasible production conditions. This study aimed to create an in-depth view of the utilization of Photobacterium ganghwense C2.2 for PHA production by linking a wide array of characterization methods: metabolic pathway annotation from the strain’s complete genome, high-throughput phenotypic tests, and biomass analyses through plate-based assays and flask and bioreactor cultivations. We confirmed, in PHA production conditions, urea catabolization, fatty acid degradation and synthesis, and high pH variation and osmotic stress tolerance. With urea as a nitrogen source, pure and rapeseed-biodiesel crude glycerol were analyzed comparatively as carbon sources for fermentation at 20 °C. Flask cultivations yielded 2.2 g/L and 2 g/L PHA at 120 h, respectively, with molecular weights of 428,629 g/mol and 81,515 g/mol. Bioreactor batch cultivation doubled biomass accumulation (10 g/L and 13.2 g/L) in 48 h, with a PHA productivity of 0.133 g/(L·h) and 0.05 g/(L·h). Thus, phenotypic and genomic analyses determined the successful use of Photobacterium ganghwense C2.2 for PHA production using urea and crude glycerol and 20 g/L NaCl, without pH adjustment, providing the basis for a viable fermentation process.  相似文献   
46.
47.
48.
49.
50.
We report on significantly increased selectivity of real-time PCR through employment of primer probes that bear hydrophobic 4'C modifications at the 3'-terminal nucleotide. The primer probes were designed to bind the target sequences in such a way that the 3'-terminal nucleotide defines whether a matched or a single mismatched basepair is present depending on the respective target sequence. Several commercially available thermostable DNA polymerases belonging to different DNA polymerase families were tested for their efficacy in discriminating between PCR amplification of matched substrates and duplexes that contain a single mismatch. It turned out that, depending on the 4'C modification and the employed DNA polymerase, significantly increased differentiation between single matches and mismatches could be observed with real-time PCR. The degrees of the observed effects varied with the employed 4'C modification and the sequence context studied. The system is robust enough to work faithfully under several buffer conditions. Our approach should be useful for the direct diagnosis of single nucleotide variations within genes, like single nucleotide polymorphisms or mutations, by PCR without the need for further time- and cost-intensive post-PCR analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号