首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17843篇
  免费   1392篇
  国内免费   1565篇
电工技术   1350篇
综合类   1131篇
化学工业   6086篇
金属工艺   562篇
机械仪表   756篇
建筑科学   1071篇
矿业工程   522篇
能源动力   1646篇
轻工业   584篇
水利工程   523篇
石油天然气   1446篇
武器工业   296篇
无线电   209篇
一般工业技术   867篇
冶金工业   346篇
原子能技术   3002篇
自动化技术   403篇
  2024年   32篇
  2023年   166篇
  2022年   390篇
  2021年   481篇
  2020年   479篇
  2019年   487篇
  2018年   464篇
  2017年   578篇
  2016年   670篇
  2015年   568篇
  2014年   1020篇
  2013年   1638篇
  2012年   1022篇
  2011年   1277篇
  2010年   971篇
  2009年   1049篇
  2008年   913篇
  2007年   1073篇
  2006年   964篇
  2005年   937篇
  2004年   772篇
  2003年   746篇
  2002年   662篇
  2001年   586篇
  2000年   441篇
  1999年   424篇
  1998年   313篇
  1997年   253篇
  1996年   207篇
  1995年   226篇
  1994年   174篇
  1993年   153篇
  1992年   105篇
  1991年   122篇
  1990年   96篇
  1989年   77篇
  1988年   44篇
  1987年   66篇
  1986年   31篇
  1985年   31篇
  1984年   19篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1959年   33篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
12.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
13.
In this work a multicommuted flow system employing copper–4,4′- dipyridyl coordination compound as the solid-phase reagent for the spectrophotometric determination of reducing sugar was developed. The coordination compound was synthesized through a reaction of the 4,4′-dipyridyl and copper (II) nitrate, under hydrothermal conditions. The complex was characterized by infrared spectroscopy (FTIR), power X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analysis (TGA). Based on the characterization, a multicommuted spectrophotometric procedure for the determination of reducing sugar using copper (II) complex as solid reagent is proposed. The proposed method was based on the redox reaction between a monosaccharide, such as fructose and glucose (reducing sugar) and Cu(II). This reaction, mediated in an alkaline medium, produces a yellow compound that can be determined by absorption electronic spectroscopy (λABS = 420 nm). Under optimum experimental conditions, a linear response ranging from 1.0 to 20.0 g L−1 (R = 0.9978 and n = 5), a detection (3σ criterion) and quantification (10σ criterion) limit estimated at 0.23 and 0.75 g L−1, respectively, a standard deviation relative of 4.7% (n = 7), for a reference solution of 10.0 g L−1 reducing sugar, and a sampling rate of 75 determinations per hour were achieved. The proposed system was applied to the determination of reducing sugars in coconut water and juices. The analysis of ten samples and the application of the t-test to the results found, and those obtained using reference procedures (AOAC), provided no significant differences at a 95% confidence level. This system enabled the analysis of reducing sugar with ease and simplicity, providing a significant economy of the solid reagent (600 μg per determination) and reducing effluent generation.  相似文献   
14.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
15.
在内径120 mm的半圆柱形内循环流化床中,以平均粒径387 nm的Ti O2为原料,考察了单独通入流化气、射流气和同时通入流化气和射流气三种流化方式下超细粉的流化特性以及射流气速对超细粉聚团尺寸的影响。结果表明:同时通入流化气和射流气时,流化气能促进粉体循环,消除环隙死区;高速射流能有效破碎聚团,显著减小聚团尺寸,从而使超细粉在环隙区与导流管之间形成稳定循环,小聚团在环隙区实现平稳流态化。随着射流气速的增大,聚团尺寸减小,粒度分布变窄,在射流气速分别为60,90,120,150 m/s的条件下,聚团平均直径分别为194,158,147,135μm。  相似文献   
16.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
17.
18.
Hydrocracking of a bitumen‐derived asphaltene over NiMo/γ‐Al2O3 was investigated in a microbatch reactor at varying temperatures. The molar kinetics of asphaltene cracking reaction was examined by fitting the experimental data. Below a defined temperature, the molar reaction showed the first‐order kinetic feature while at higher temperatures secondary reactions such as coke formation became significant, causing deviation of the reaction behavior from the proposed first‐order kinetic model. Selectivity analysis proved that dominant products varied from gases to liquids to gases with increasing temperature, shifting the dominant reaction from C–S bonds cleavage to C–C bonds cleavage.  相似文献   
19.
20.
Abrasive jet micro-machining (AJM) uses compressed air carrying abrasive solid particles to micro-machine a variety of features into surfaces. If the feature sizes are less than the size of the abrasive jet footprint, then a patterned erosion-resistant mask is used to protect the substrate material, leaving exposed areas to define the features. Previous investigations have revealed a ‘blast lag’ phenomenon in which, for the same dose of abrasive particles, narrower mask openings lead to channels that are shallower than wider ones. Blast lag occurs when using AJM on brittle substrates because of the natural tendency to rapidly form a V-shaped cross-sectional profile which inhibits abrasive particle strikes on the narrow vertex at the feature centerline. In this paper, the blast lag phenomenon is studied when using AJM to machine a network of microfluidic channels. It is found that, in some cases, differences in blast lag occurring at channel intersections and within the channels themselves, can lead to channel networks of nonuniform depth. A previously developed surface evolution model is adapted to allow prediction of the onset of blast lag in the channels and intersections and thus explain these differences. Finally, methods to eliminate the differences are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号