首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7625篇
  免费   965篇
  国内免费   215篇
电工技术   69篇
综合类   213篇
化学工业   3175篇
金属工艺   283篇
机械仪表   108篇
建筑科学   54篇
矿业工程   15篇
能源动力   512篇
轻工业   103篇
水利工程   4篇
石油天然气   37篇
武器工业   20篇
无线电   792篇
一般工业技术   3209篇
冶金工业   49篇
原子能技术   29篇
自动化技术   133篇
  2024年   22篇
  2023年   132篇
  2022年   129篇
  2021年   259篇
  2020年   267篇
  2019年   264篇
  2018年   312篇
  2017年   367篇
  2016年   356篇
  2015年   378篇
  2014年   508篇
  2013年   537篇
  2012年   533篇
  2011年   770篇
  2010年   607篇
  2009年   641篇
  2008年   520篇
  2007年   472篇
  2006年   580篇
  2005年   410篇
  2004年   289篇
  2003年   219篇
  2002年   138篇
  2001年   46篇
  2000年   18篇
  1999年   16篇
  1998年   5篇
  1997年   6篇
  1951年   4篇
排序方式: 共有8805条查询结果,搜索用时 0 毫秒
81.
Electron transfer between metal-oxides and supports considerably affects the oxidative desulfurization (ODS) performance of catalysts, while this is far from being well understood. Herein, molybdenum dioxide with oxygen vacancies (VO-MoO2) catalysts derived from Mo-based metal-organic frameworks are anchored on electron-rich nitrogen-doped carbon nanotubes (NC) to obtain excellent ODS activity and reusability. Results show that either dibenzothiophene (DBT) or 4,6-dimethyldibenzothiophene (4,6-DMDBT) is removed 100% on the composite catalyst (VO-MoO2@NC) within 40 min of reaction when cumene hydroperoxide is chosen as an oxidant. After five cycles of reaction, DBT and 4,6-DMDBT removal still exceeded 99.5 and 95.0%, respectively. Results from density functional theory calculations and characterizations confirm that the strong electron-donating effect of NC on VO-MoO2 can promote the dispersion of VO-MoO2 and reduce the bond energy of the Mo O bond, leading to exposure of active sites and enrichment of oxygen vacancies (VO). Furthermore, the strong interfacial electrostatic interaction caused by the electron transfer from NC to VO-MoO2 can reduce the leaching of active sites of the catalyst. This study provides a versatile strategy of constructing strong electronic interaction between metal-oxide and support via anchoring on NC for the design of high-performance ODS catalysts.  相似文献   
82.
In the pursuit of advanced polymer composites, nanoscale fillers have long been championed as promising candidates for structural reinforcement. Despite progress, questions remain as to how these diminutive fillers influence the distribution of stresses within the matrix and, in turn, influence bulk mechanical properties. The dynamic mechanical behavior of elastomer‐impregnated forests of carbon nanotubes (CNTs) has revealed distinct orientation‐dependent behavior that sheds light on these complicated interactions. When compressed along the axis of the fillers, the composite will mimic open‐cell foams and exhibit strain softening for increasing amplitudes due to the collective Euler buckling of the slender nanotubes. In contrast, the same material will behave similarly to the neat polymer when compressed orthogonal to the alignment direction of the nanotubes. However, in this orientation the material is incapable of achieving the same ultimate compressive strain due to the role that the embedded nanotubes play in augmenting the effective cross‐link density of the polymer network. Both of these responses are recoverable, robust, and show little dependency on the diameter and wall‐number of the included CNTs. Such observations give insight into the mechanics of polymer/nanoparticle interactions in nanocomposite structures under strain, and the thoughtful control of such coordinated buckling behavior opens the possibility for the development of foam‐like materials with large Poisson ratios.  相似文献   
83.
利用自制的场助热丝化学气相沉积设备,在不锈钢电极的部分选取表面上,摸索出了直接生长碳纳米管(CNT’s)勿须涂敷催化剂的新方法。利用得到的高定向多壁碳纳米管薄膜,研究出一种制造大面积实用碳纳米管阵列场发射(CNT’s/FEA)阴极的新方法。经真空条件下的发射特性测量及SEM等检测手段肯定了这种CNT’s/FEA阴极的实用性。从工艺流程角度出发,初步探讨了静态工作制式下,采用碳纳米管做电极后,实现一种全密封超薄碳纳米管玻璃真空字符(或图像)显示器件的可能性。10多只封离管共显示过3种类型的字型(图像),全部管厚仅为2.7mm。实验结果不仅提供了一种碳纳米管阴极在玻璃真空平板型器件内应用的方法,也摸索出了一条实现小尺寸双色(或多色)字符(图像)静态(或动态)显示的廉价、节能途径。  相似文献   
84.
85.
纳米碳管的电子衍射及其螺旋度测量   总被引:1,自引:0,他引:1  
本文对电弧放电和催化剂热解碳氢气法制备的多层直形纳米碳管的倒空间及其螺旋度,采用电子衍射进行了研究。结果表明:尽管制备方法不同,两类多层管的结构相似,皆由螺旋和非螺旋的单层石墨管组成;对其倒空间的分析以及系列倾转电子衍射实验证明,衍射图中测得的表观螺旋度值随和射条件而改变,只有在垂直入射条件下该值才代表碳管的真实螺旋度;  相似文献   
86.
TiO2 nanotube arrays and particulate films are modified with CdS quantum dots with an aim to tune the response of the photoelectrochemical cell in the visible region. The method of successive ionic layer adsorption and reaction facilitates size control of CdS quantum dots. These CdS nanocrystals, upon excitation with visible light, inject electrons into the TiO2 nanotubes and particles and thus enable their use as photosensitive electrodes. Maximum incident photon to charge carrier efficiency (IPCE) values of 55% and 26% are observed for CdS sensitized TiO2 nanotube and nanoparticulate architectures respectively. The nearly doubling of IPCE observed with the TiO2 nanotube architecture is attributed to the increased efficiency of charge separation and transport of electrons.  相似文献   
87.
Boroxines, (R‐BO)3, which can be easily synthesized via a dehydration reaction of boronic acids, R–B(OH)2, selectively self‐assemble in toluene into nanofibers, nanorods, nanotapes, and nanotubes, depending on the aromatic substituent (R). Spectroscopic measurements show that the nanotube consists of a J‐aggregate of the boroxine. Humidification converts the morphology from the nanotube to a sheet as a result of the hydrolysis of the boroxine components and subsequent molecular‐packing rearrangement from the J‐aggregate to an H‐aggregate. Such a transformation leads to the compulsive release of guest molecules encapsulated in the hollow cylinder of the nanotube. The hydrolysis and the molecular‐packing rearrangement described above are suppressed by coordination of pyridine to the boron atom, with the resulting moiety acting as a Lewis acid of the boroxine component. The pyridine‐coordinated nanotube is transformed into a helical coil by humidification. Guest release during the nanotube‐to‐helical‐coil transformation is much slower than during the nanotube‐to‐sheet transformation, but faster than from a nanotube that did not undergo morphological transformation. The storage and release of guest molecules from the boroxine nanotubes can be precisely controlled by adjusting the moisture level and the concentration of Lewis bases, such as amines.  相似文献   
88.
A method of patterning large arrays of organic single crystals is reported. Using single‐walled carbon nanotube (SWNT) bundles as patterned templates, several organic semiconductor materials were successfully patterned, including p‐type pentacene, tetracene, sexiphenylene, and sexithiophene, as well as n‐type tetracyanoquinodimethane (TCNQ). This study suggests that the selective growth of crystals onto patterned carbon nanotubes is most likely due to the coarse topography of the SWNT bundles. Moreover, we observed that the crystals nucleated from SWNT bundles and grew onto SWNT bundles in a conformal fashion. The dependence of the number of crystals on the quantity of SWNT bundles is also discussed. The crystal growth can be directly applied onto transistor source‐drain electrodes and arrays of organic single‐crystal field effect transistors are demonstrated. The results demonstrate the potential of utilizing carbon nanotubes as nucleation templates for patterning a broad range of organic materials for applications in optoelectronics.  相似文献   
89.
A simple method to decorate mutliwalled carbon nanotubes (MWCNTs) with silver nanoparticles (Ag NPs) to enhance the structural properties is reported in the present study. The Ag NPs of average size 9 nm were deposited uniformly on MWCNTs network by RF sputtering technique. X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) are used to compare the structural properties of Ag NPs sputtered nanotubes with those containing functionalized tubes. In addition, effect of these Ag NPs on the surface of nanotubes and optimization of the experimental parameter for uniform deposition of Ag NPs are also discussed.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号