全文获取类型
收费全文 | 285篇 |
免费 | 82篇 |
国内免费 | 52篇 |
专业分类
电工技术 | 11篇 |
综合类 | 24篇 |
化学工业 | 7篇 |
金属工艺 | 2篇 |
机械仪表 | 4篇 |
建筑科学 | 4篇 |
矿业工程 | 3篇 |
能源动力 | 2篇 |
轻工业 | 8篇 |
石油天然气 | 58篇 |
武器工业 | 2篇 |
无线电 | 67篇 |
一般工业技术 | 22篇 |
冶金工业 | 12篇 |
原子能技术 | 1篇 |
自动化技术 | 192篇 |
出版年
2024年 | 12篇 |
2023年 | 26篇 |
2022年 | 54篇 |
2021年 | 52篇 |
2020年 | 41篇 |
2019年 | 24篇 |
2018年 | 25篇 |
2017年 | 12篇 |
2016年 | 12篇 |
2015年 | 8篇 |
2014年 | 16篇 |
2013年 | 14篇 |
2012年 | 16篇 |
2011年 | 15篇 |
2010年 | 13篇 |
2009年 | 26篇 |
2008年 | 14篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 8篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有419条查询结果,搜索用时 15 毫秒
41.
为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接层,同时将两通道卷积神经网络的第一池化层提取的特征也直接送到全连接层,使提取得到的初级和高级特征图在全连接层上进行融合,融合后的数据输入到Softmax分类器进行分类。不同算法在fashion-mnist和CIFAR-10数据库上的对比仿真结果表明,本文模型获得了较高的分类准确率。 相似文献
42.
43.
44.
当前利用深度学习方法进行扬尘图像识别的研究较少,一些传统的方法使得扬尘图像的识别率较低.针对这种情况,提出一种基于改进残差网络的扬尘识别方法.该方法将ResNet-50网络应用到扬尘数据集中,并对其网络结构进行了改进.加入空间金字塔池化以解决输入图像尺寸不固定的问题,并且将金字塔池的策略改为平均池化,将扩大特征图的方法应用到主干网络中,有利于提取到更加细粒度的特征,提升模型的性能,从而提高识别率.实验结果表明,该方法具有很高的精确度,为扬尘识别提供了一种有效的方案. 相似文献
45.
基于稀疏自编码深度神经网络的林火图像分类 总被引:1,自引:0,他引:1
针对林火与相似目标很难区分的问题,提出一种基于稀疏自编码深度神经网络的林火图像分类新方法。采用无监督的特征学习算法稀疏自编码从无标签图像小块中学习特征参数,完成深度神经网络的训练;利用学习到的特征从原始大小分类图像中提取特征并卷积和均值池化特征;对卷积和池化后的特征采用softmax回归来训练最终softmax分类器。实验结果表明,跟传统的BP神经网络相比,新方法能够更有效区分林火与红旗、红叶等类似物体。 相似文献
46.
目的 传统人脸检测方法因人脸多姿态变化和人脸面部特征不完整等问题,导致检测效果不佳。为解决上述问题,提出一种两层级联卷积神经网络(TC_CNN)人脸检测方法。方法 首先,构建两层卷积神经网络模型,利用前端卷积神经网络模型对人脸图像进行特征粗略提取,再利用最大值池化方法对粗提取得到的人脸特征进行降维操作,输出多个疑似人脸窗口;其次,将前端粗提取得到的人脸窗口作为后端卷积神经网络模型的输入进行特征精细提取,并通过池化操作得到新的特征图;最后,通过全连接层判别输出最佳检测窗口,完成人脸检测全过程。结果 实验选取FDDB人脸检测数据集中包含人脸多姿态变化以及人脸面部特征信息不完整等情况的图像进行测试,TC_CNN方法人脸检测率达到96.39%,误检率低至3.78%,相比当前流行方法在保证算法效率的同时检测率均有提高。结论 两层级联卷积神经网络人脸检测方法能够在人脸多姿态变化和面部特征信息不完整等情况下实现精准检测,保证较高的检测率,有效降低误检率,方法具有较好的鲁棒性和泛化能力。 相似文献
47.
不透水面作为监测城市生态环境的重要指标,其信息提取具有重要意义。由于城市地表的复杂性及细化的城市管理需要,急需提取高精度的城市不透水面。但是基于传统方法提取高精度的城市不透水面面临巨大困难。而深度学习方法因其自动化提取影像特征的特点逐渐成为遥感影像地物提取的新兴方法。基于此,采用多尺度特征融合的U-Net深度学习方法以提升语义分割精度,开展高分辨率遥感影像不透水面的精确提取研究。模型引入残差模块代替普通卷积以加深网络,提取更多影像特征;加入金字塔池化模块增强网络对复杂场景的解析能力;利用跳跃连接方式融合不同尺度特征,有利于恢复空间信息。以广州市航摄正射影像为数据源,通过卷积神经网络将遥感影像分割为背景、其他、植被、道路和房屋5种地物类型,将其与人工目视解译的地面真值进行验证,最终提取研究区域不透水面。实验证明:多尺度特征融合的U-Net模型总体精度和Kappa系数分别为87.596%和0.82。在定性与定量两个方面均优于传统的监督分类法、面向对象分类法和经典U-Net模型法。结果表明:该模型利用多维度影像特征信息,有效提升了复杂场景图像的分割精度,分割效果好,适用于高分辨率遥感影像不透... 相似文献
48.
现有的大多数虚假新闻检测方法将视觉和文本特征串联拼接,导致模态信息冗余并且忽略了不同模态信息之间的相关性。为了解决上述问题,提出一种基于矩阵分解双线性池化的多模态融合虚假新闻检测算法。首先,该算法将多模态特征提取器捕捉的文本和视觉特征利用矩阵分解双线性池化方法进行有效融合,然后与虚假新闻检测器合作鉴别虚假新闻;此外,在训练阶段加入了事件分类器来预测事件标签并去除事件相关的依赖。在Twitter和微博两个多模态谣言数据集上进行了对比实验,证明了该算法的有效性。实验结果表明提出的模型能够有效地融合多模态数据,缩小模态间的异质性差异,从而提高虚假新闻检测的准确性。 相似文献
49.
烟雾图像分割是对烟雾进行识别与精准定位的基础, 是火灾预警的重要手段. 针对烟雾分割时存在过分割、欠分割以及边界拟合粗糙的问题, 本文提出一种基于频率分离特性的烟雾图像分割网络. 所提出的频率分离模块将特征图中的烟雾区域分离为低频主体部分和高频边界部分, 同时基于多任务学习设计多模块权重自适应损失函数对烟雾整体、主体、边界分别监督学习, 起到细化烟雾边界和改善烟雾整体分割结果的作用; 此外, 结合可变形卷积提出改进的空洞空间金字塔池化模块以解决其信息利用率低和特征关联性差的问题. 在对比实验中, FSNet的烟雾交并比为76.55%, 比基线网络提高了4.25%. 可视化分割结果可以看出, FSNet能有效缓解过分割、欠分割, 所得烟雾边界更平滑, 烟雾图像分割的整体性能获得较大提升. 相似文献
50.
目的 基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法 构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果 通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论 动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。 相似文献