首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5265篇
  免费   973篇
  国内免费   973篇
电工技术   1398篇
综合类   624篇
化学工业   152篇
金属工艺   104篇
机械仪表   443篇
建筑科学   228篇
矿业工程   146篇
能源动力   133篇
轻工业   167篇
水利工程   176篇
石油天然气   73篇
武器工业   163篇
无线电   461篇
一般工业技术   285篇
冶金工业   134篇
原子能技术   37篇
自动化技术   2487篇
  2024年   96篇
  2023年   206篇
  2022年   280篇
  2021年   314篇
  2020年   335篇
  2019年   305篇
  2018年   309篇
  2017年   351篇
  2016年   373篇
  2015年   297篇
  2014年   406篇
  2013年   460篇
  2012年   398篇
  2011年   410篇
  2010年   289篇
  2009年   310篇
  2008年   254篇
  2007年   309篇
  2006年   243篇
  2005年   189篇
  2004年   169篇
  2003年   144篇
  2002年   118篇
  2001年   99篇
  2000年   92篇
  1999年   67篇
  1998年   51篇
  1997年   56篇
  1996年   55篇
  1995年   44篇
  1994年   32篇
  1993年   30篇
  1992年   23篇
  1991年   16篇
  1990年   16篇
  1989年   16篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1966年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有7211条查询结果,搜索用时 0 毫秒
71.
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.  相似文献   
72.
The output feedback robust model predictive control (MPC), for the linear parameter varying (LPV) system with norm-bounded disturbance, is addressed, where the model parametric matrices are only known to be bounded within a polytope. The previous techniques of norm-bounding technique, quadratic boundedness (QB), dynamic output feedback, and ellipsoid (true-state bound; TSB) refreshment formula for guaranteeing recursive feasibility, are fused into the newly proposed approaches. In the notion of QB, the full Lyapunov matrix is applied for the first time in this context. The single-step dynamic output feedback robust MPC, where the infinite-horizon control moves are parameterised as a dynamic output feedback law, is the main topic of this paper, while the multi-step method is also suggested. In order to strictly guarantee the physical constraints, the outer bound of the true state replaces the true state itself, so tightness of this bound has a major effect on the control performance. In order to tighten the TSB, a procedure for refreshing the real-time ellipsoid based on that of the last sampling instant is given. This paper is conclusive for the past results and far-reaching for the future researches. Two benchmark examples are given to show the effectiveness of the novel results.  相似文献   
73.
This paper investigates the problem of leader–follower finite-time consensus for a class of time-varying nonlinear multi-agent systems. The dynamics of each agent is assumed to be represented by a strict feedback nonlinear system, where nonlinearities satisfy Lipschitz growth conditions with time-varying gains. The main design procedure is outlined as follows. First, it is shown that the leader–follower consensus problem is equivalent to a conventional control problem of multi-variable high-dimension systems. Second, by introducing a state transformation, the control problem is converted into the construction problem of two dynamic equations. Third, based on the Lyapunov stability theorem, the global finite-time stability of the closed-loop control system is proved, and the finite-time consensus of the concerned multi-agent systems is thus guaranteed. An example is given to verify the effectiveness of the proposed consensus protocol algorithm.  相似文献   
74.
This paper is concerned with the characterisation of robust admissibility and admissibilisation for uncertain discrete-time singular system with interval time-varying delay. Considering the norm-bounded uncertainty and the interval time-varying delay, a new comparison model is introduced to transform the original singular system into two connected subsystems. After this transformation, a singular system without uncertainty and delay can be handled by the Lyapunov–Krasovskii functional method. By virtue of the scaled small gain theorem, an admissibility condition of the original singular system is proposed in terms of linear matrix inequalities. Moreover, the problem of robust admissibilisation of uncertain discrete singular time-varying system is also studied by iterative linear matrix inequality algorithm with initial condition optimisation. Several numerical examples are used to illustrate that the results are less conservative than existing ones.  相似文献   
75.
This paper studies the problem of robust fault-tolerant control against the actuator effectiveness loss for delta operator systems with actuator saturation. Ellipsoids are used to estimate the domain of attraction for the delta operator systems with actuator saturation and effectiveness loss. Some invariance set conditions used for enlarging the domain of attraction are expressed by linear matrix inequalities. Discussions on system performance optimisation are presented in this paper, including reduction on computational complexity, expansion of the domain of attraction and disturbance rejection. Two numerical examples are given to illustrate the effectiveness of the developed techniques.  相似文献   
76.
In this paper, we consider finite-time control problems for linear multi-agent systems subject to exogenous constant disturbances and impulses. Some sufficient conditions are obtained to ensure the finite-time boundedness of the multi-agent systems, which could be then reduced to a feasibility problem involving linear matrix inequalities. Numerical examples are given to illustrate the results.  相似文献   
77.
This paper addresses the tracking problem of a class of multi-agent systems under uncertain communication environments which has been modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sliding mode control method is applied to solve this nonlinear tracking problem under a time-varying topology. The controller of each tracking agent has been designed by using only its own and neighbours’ information. Sufficient conditions for the existence of a sliding mode control tracking strategy have been provided by the solvability of linear matrix inequalities. At the end of this work, numerical simulations are employed to demonstrate the effectiveness of the proposed sliding mode control tracking strategy.  相似文献   
78.
This paper focuses on studying the H state estimation of generalised neural networks with interval time-varying delays. The integral terms in the time derivative of the Lyapunov–Krasovskii functional are handled by the Jensen’s inequality, reciprocally convex combination approach and a new Wirtinger-based double integral inequality. A delay-dependent criterion is derived under which the estimation error system is globally asymptotically stable with H performance. The proposed conditions are represented by linear matrix inequalities. Optimal H norm bounds are obtained easily by solving convex problems in terms of linear matrix inequalities. The advantage of employing the proposed inequalities is illustrated by numerical examples.  相似文献   
79.
In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.  相似文献   
80.
This article addresses the high-precision coordinated control problem of spacecraft autonomous rendezvous and docking, which couple the relative position and attitude in the final approach phase. The coupled dynamics equations of the tracking-target spacecrafts is derived by using dual quaternions. Then, a cascade Active Disturbance Rejection Controller is proposed, by which the extended state observer and nonlinear error feedback law is designed, the virtual value on which the actual control volume tracking is calculated to ensure the finite time convergence of the relative position and attitude tracking errors in spite of parametric uncertainties and external disturbances. Finally, numerical simulations are performed to demonstrate that the proposed approaches, which can avoid the coupling effect and restrain the interference, can track the target spacecraft in a relatively short period of time, and the control precision can satisfy the requirements of docking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号