首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  国内免费   3篇
轻工业   1篇
无线电   1篇
一般工业技术   2篇
自动化技术   4篇
  2024年   1篇
  2023年   4篇
  2021年   2篇
  2020年   1篇
排序方式: 共有8条查询结果,搜索用时 109 毫秒
1
1.
人体血细胞的检测与分割可以辅助医生快速对人体当前健康情况做出简单判断,对诊断疾病具有重要意义.为了解决传统图像分割算法在血细胞分割任务中出现错误分割目标、无法完全分割目标等问题,提出了一种融合Xception特征提取和坐标注意力机制的血细胞分割算法XCA-Unet++.该算法在Unet++网络结构的基础上,在编码器部分引入Xception特征提取网络以更好地提取低层特征信息.设计了一种以坐标注意力机制为基础的注意力细胞检测模块,增强了网络对血细胞模糊边缘和不完整细胞的特征提取能力.采用DiceLoss作为损失函数以优化数据集正负样本不均衡问题和提高网络的收敛能力.在公开血细胞数据集上的实验对比表明, XCA-Unet++网络在IoU、Acc和F1评估指标下分别取得94.44%、96.78%和97.12%的结果,分割性能优于其他分割网络,满足血细胞分割任务的精度要求.  相似文献   
2.
黄杰  蒋丰 《计算机系统应用》2021,30(10):319-324
针对经典Unet算法在提取遥感影像中建筑物特征时存在编码信息丢失、对多尺度建筑目标适应性差和上下文特征联系不足的问题,本研究提出了一种多尺度融合的变形残差金字塔编解码网络.首先,引入深度编码网络与下采样旁路网络替换原编码结构,共同完成对建筑物目标高阶特征信息的提取;其次,在编码网络次末端节点引入联合变形卷积的残差金字塔结构,以提升网络对建筑物多尺度特征和边缘模糊特征的辨识能力;最后,将高阶和低阶特征逐层级联融合,在解码网络末端获取对建筑物的分割结果.实验结果表明,改进后模型相比原模型在F1-score和MIOU指标上分别提升了1.6%和2.1%.  相似文献   
3.
Segmenting brain tumors in Magnetic Resonance Imaging (MRI) volumes is challenging due to their diffuse and irregular shapes. Recently, 2D and 3D deep neural networks have become famous for medical image segmentation because of the availability of labelled datasets. However, 3D networks can be computationally expensive and require significant training resources. This research proposes a 3D deep learning model for brain tumor segmentation that uses lightweight feature extraction modules to improve performance without compromising contextual information or accuracy. The proposed model, called Hybrid Attention-Based Residual Unet (HA-RUnet), is based on the Unet architecture and utilizes residual blocks to extract low- and high-level features from MRI volumes. Attention and Squeeze-Excitation (SE) modules are also integrated at different levels to learn attention-aware features adaptively within local and global receptive fields. The proposed model was trained on the BraTS-2020 dataset and achieved a dice score of 0.867, 0.813, and 0.787, as well as a sensitivity of 0.93, 0.88, and 0.83 for Whole Tumor, Tumor Core, and Enhancing Tumor, on test dataset respectively. Experimental results show that the proposed HA-RUnet model outperforms the ResUnet and AResUnet base models while having a smaller number of parameters than other state-of-the-art models. Overall, the proposed HA-RUnet model can improve brain tumor segmentation accuracy and facilitate appropriate diagnosis and treatment planning for medical practitioners.  相似文献   
4.
针对现有背景建模算法难以处理复杂前景及间歇性运动前景的问题,提出了一种基于非监督学习的背景建模算法(改进的BM-Unet算法)。该算法结合光流法和Pearson相关系数在视频帧上提取背景关注区域,以此优化网络训练集和损失函数,从而有效提高了该算法在复杂前景情况和前景停留情况下的适应性;在此基础上,为进一步提高背景生成的精确度,又提出了一种堆叠Unet网络架构BM-SUnet(background modelling stacked Unet)。在SBMnet数据集上与现有算法在可视化效果和评估参数两方面的比较结果表明,所提算法在复杂前景和间歇运动前景情况下建模准确性好且鲁棒性高的结论。  相似文献   
5.
视网膜血管的分割精确率对眼科疾病和糖尿病早期诊断有着重要影响。面对现有方法在微血管与病变区域分割性能差的问题,本文提出一种强化提取血管特征的分割模型。该模型在编码部位引入多尺度特征提取残差模块(multi-scale feature extraction residual module,MFE-residual) 和多级残差空洞卷积层,用来扩展感受野,学习多层次图像特征,提高模型对血管信息的利用率;下采样和短连接部位分别融入轻量化注意力机制和多通道注意力模块,增加模型对血管的识别度,降低误分割的可能性。本文基于DRIVE和STARE两种公开数据集进行了实验,来验证改 进模型的分割能力。结果表明,两种数据上的准确率分别为0.965 2和0.971 5,灵敏度分别为0.820 5和0.825 6,与其他算法相比,分割性能更有优势。  相似文献   
6.
从图像中分割出肝脏和肝肿瘤是肝部疾病诊断重要手段之一,现有基于卷积神经网络(Convolutional Neural Network,CNN)方法通过为输入图像中每个像素分配类别标签来实现肝脏和肝肿瘤分割。CNN在对每个像素分类过程中没有使用邻域内其他像素类别信息,容易出现小目标漏检和目标边界分割模糊问题。针对这些问题,提出了条件能量对抗网络用于肝脏和肝肿瘤分割。该方法基于能量生成对抗网络(Energy-Based Generative Adversarial Network,EBGAN)和条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),使用一个基于CNN的分割网络作为生成器与一个自编码器作为判别器,通过将判别器作为一种损失函数来度量并提升分割结果与真实标注之间的相似度。在对抗训练过程中,判别器将生成器输出的分割结果作为输入并将原始图像作为条件约束,通过学习像素类别之间的高阶一致性提高分割精度,使用能量函数作为判别器避免了对抗网络训练中容易出现的梯度消失或梯度爆炸,更易于训练。在MICCAI 2017肝肿瘤分割(LiTS)挑战赛的数据集和3DIRCADb数据集上对提出的方法进行验证,实验结果表明,该方法不仅实现了肝脏与肝肿瘤的自动分割,还利用像素类别之间的高阶一致性提升了肿瘤和肝脏边界的分割精度,减少了小体积肿瘤的漏检。  相似文献   
7.
Image deraining has become a hot topic in the field of computer vision. It is the process of removing rain streaks from an image to reconstruct a high-quality background. This study aims at improving the performance of image rain streak removal and reducing the disruptive effects caused by rain. To better fit the rain removal task, an innovative image deraining method is proposed, where a kernel prediction network with Unet++ is designed and used to filter rainy images, and rainy-day images are used to estimate the pixel-level kernel for rain removal. To minimize the gap between synthetic and real data and improve the performance in real rainy image handling, a loss function and an effective data optimization method are suggested. In contrast with other methods, the loss function consists of Structural Similarity Index loss, edge loss, and L1 loss, and it is adopted to improve performance. The proposed algorithm can improve the Peak Signal-to-Noise ratio by 1.3% when compared to conventional approaches. Experimental results indicate that the proposed method can achieve a better efficiency and preserve more image structure than several classical methods.  相似文献   
8.
申鹰  谢锋  王玉琳  谭波  范金旭 《食品与机械》2023,39(11):53-57,142
目的:研制满足检验检测机构管理体系要求和实验室LIMS系统应用的全自动高通量菌落计数仪。方法:采用GigE工业相机、可变镜头和多光源组合照明系统进行菌落图像的连续采集,并采用Unet++分割模型进行图像识别处理和菌落计数。结果:该菌落计数仪完成1个平板的图像采集仅需38 s,采集效率较高;完成1个平板的图像传输和菌落识别计数整个过程仅需3~5 s,数据处理速度快且传输性能好;计数结果与现行标准要求的计数方法相比误差<8%,准确率高;具有结果重复性好等特点,同时实现了菌落总数检测原始数据的自动化处理。结论:该设备不仅能高通量进行图像采集,自动进行图像处理和菌落计数,还可实现与实验室LIMS系统的融合,有效提高工作效率,而且能确保数据的溯源性,减轻试验人员工作强度,满足菌落总数计数方法的误差要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号