Ethanol is seen as an attractive option as a fuel for direct ethanol fuel cells and as a source for on-demand production of hydrogen in portable applications. While the effect of ethanol on in-situ electrode behavior has been studied previously, these efforts have mostly been limited to qualitative analysis. In alkaline fuel cells, several cathode catalysts, including Pt, Cu triazole, and Ag can be used. Here, we apply a methodology using a microfluidic fuel cell to analyze in-situ the performance of these cathodes as well as Pt anodes in the presence of ethanol and acetic acid, a common side product from ethanol oxidation. For a given concentration of ethanol (or acetic acid), the best cathode catalyst can be determined and the kinetic losses due to the presence of ethanol (or acetic acid) can be quantified. These experiments also yield information about power density losses from the presence of contaminants such as ethanol or acetic acid in an alkaline fuel cell. The methodology demonstrated in these experiments will enable in-situ screening of new cathodes with respect to contaminant tolerance and determining optimal operational conditions for alkaline ethanol fuel cells. 相似文献
ABSTRACT: In the hydrogenated amorphous silicon [a-Si:H]-thin film solar cell, large amounts of traps reduce the carrier's lifetime that limit the photovoltaic performance, especially the power conversion efficiency. The nanowire structure is proposed to solve the low efficiency problem. In this work, we propose an amorphous silicon [a-Si]-solar cell with a nanocone array structure were implemented by reactive-ion etching through a polystyrene nanosphere template. The amorphous-Si nanocone exhibits absorption coefficient around 5 × 105/cm which is similar to the planar a-Si:H layer in our study. The nanostructure could provide the efficient carrier collection. Owing to the better carrier collection efficiency, efficiency of a-Si solar cell was increased from 1.43% to 1.77% by adding the nanocone structure which has 24% enhancement. Further passivation of the a-Si:H surface by hydrogen plasma treatment and an additional 10-nm intrinsic-a-Si:H layer, the efficiency could further increase to 2.2%, which is 54% enhanced as compared to the planar solar cell. The input-photon-to-current conversion efficiency spectrum indicates the efficient carrier collection from 300 to 800 nm of incident light. 相似文献
In this paper, a new type of inundation forecasting model with the effective typhoon characteristics is proposed by integrating support vector machine (SVM) with multi-objective genetic algorithm (MOGA). Firstly, a comparison of the proposed model and an existing model based on back-propagation network (BPN) is made to highlight the improvement in forecasting performance. Next, the proposed model is compared with the SVM-based model without typhoon characteristics to investigate the influence of typhoon characteristics on inundation forecasting. Effective typhoon characteristics for improving forecasting performance are identified as well. An application to Chiayi City, Taiwan, is conducted to demonstrate the superiority of the proposed model. The results confirm that the proposed model with the effective typhoon characteristics does improve the forecasting performance and the improvement increases with increasing lead-time, especially for long lead-time forecasting. The proposed model is capable of optimizing the input to decrease the negative impact when increasing forecast lead time. In conclusion, effective typhoon characteristics are recommended as key inputs for inundation forecasting during typhoons. 相似文献
Electronic auction (e-auction), a major e-commerce model, has enjoyed rapid growth in many countries. This study develops a web assessment model (EAWAM) from a consumer perspective that suggests that user intention to continue using an e-auction website is based on users’ satisfaction with the e-auction website, which is determined by perceived e-auction user friendliness, functionality and interactivity. Web trustworthiness serves as an important antecedent to perceived e-auction user friendliness and functionality. To validate this model, a survey was conducted using 191 users of Taobao.com from 15 cities in China. Partial Least Square analysis results provided strong support for this model and also yielded important implications and suggestions for further research. 相似文献
Water Resources Management - Effectively assessing crucial monitoring sites with suspended sediment concentration (SSC) is a vital challenge for achieving accurate prediction of sediment flux on... 相似文献
Accurate hourly real-time flood forecasting is necessary for early flood warning systems, especially during typhoon periods. Artificial intelligence methods have been increasingly used for real-time flood forecasting. This study developed a real-time flood forecasting model by using back-propagation networks (BPNs) with a self-organizing map (SOM) to create ensemble forecasts. Random weights and biases were set for the BPNs to learn the characteristics of a catchment system. An unsupervised SOM network with a classification function was then used to cluster representative BPN weights and biases; clusters of BPNs with high accuracy were selected to act as experts for the ensemble models to forecast flow rates. The model was applied to flood events in the Wu River Basin of Taiwan. Most observed values were within the forecasting intervals of the BPN clusters in the calibration and validation phases, indicating that the models had acceptable accuracy. For the large flood events of typhoons Saola in the calibration phase and Soulik in the validation phase, the mean average error of the ensemble mean model for the cluster A was 143.1 and 327.4 m3/s, respectively; these values were lower than those for the best individual model within the cluster (194.3 and 917.9 m3/s). The ensemble model thus outperformed the individual models and can accurately forecast flood values and intervals. Therefore, the model can be used to accurately forecast floods.
The framework of 2‐pyridones is prevalent in biologically and medicinally important molecules. Here we report that chiral N‐substituted 2‐pyridones were prepared by enantioselective, organocatalytic aza‐Michael additions of halogenated 2‐hydroxypyridines (pyridin‐2(1H)‐ones) to α,β‐unsaturated‐1,4‐dketones or 1,4‐ketoesters. The reactions were optimized by the choice of solvents and systematic screening of Cinchona alkaloid‐based bifunctional catalysts to achieve excellent yields and enantioselectivities (up to 98% yield and >99% ee). Density functional theory calculations provided rationales for the observed enantioselectivity. Formal synthesis of a human rhinovirus protease inhibitor was achieved using the chiral Michael adduct generated by this method.