首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   3篇
  国内免费   5篇
综合类   4篇
化学工业   177篇
金属工艺   3篇
建筑科学   3篇
矿业工程   3篇
轻工业   11篇
水利工程   4篇
石油天然气   7篇
无线电   1篇
一般工业技术   7篇
冶金工业   2篇
原子能技术   1篇
自动化技术   4篇
  2023年   9篇
  2022年   62篇
  2021年   72篇
  2020年   6篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1980年   1篇
排序方式: 共有227条查询结果,搜索用时 0 毫秒
1.
Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in the manufacture of polyvinylchloride plastics and has been associated with concerns regarding male reproductive toxicity. In this study, we hypothesized that maternal exposure to DEHP induces transgenerational inheritance of adult-onset adverse reproductive outcomes through the male germline in the F1, F2, and F3 generations of male offspring. Pregnant rats were treated with 5 or 500 mg of DEHP/kg/day through gavage from gestation day 0 to birth. The offspring body weight, anogenital distance (AGD), anogenital index (AGI), sperm count, motility, and DNA fragmentation index (DFI) were measured for all generations. Methyl-CpG binding domain sequencing was performed to analyze sperm DNA methylation status in the F3. DEHP exposure at 500 mg/kg affected AGD, AGI, sperm count, mean DFI, and %DFI in the F1; AGD, sperm count, and mean DFI in the F2; and AGD, AGI, mean DFI, and %DFI in the F3. DEHP exposure at 5 mg/kg affected AGD, AGI, sperm count, and %DFI in the F1; sperm count in the F2; and AGD and AGI in F3. Compared with the control group, 15 and 45 differentially hypermethylated genes were identified in the groups administered 5 mg/kg and 500 mg/kg DEHP, respectively. Moreover, 130 and 6 differentially hypomethylated genes were observed in the groups administered 5 mg/kg and 500 mg/kg DEHP. Overall, these results demonstrated that prenatal exposure to DEHP caused transgenerational epigenetic effects, which may explain the observed phenotypic changes in the male reproductive system.  相似文献   
2.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
3.
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.  相似文献   
4.
Direct reprogramming of cardiac fibroblasts to induced cardiomyocytes (iCMs) is a promising approach to cardiac regeneration. However, the low yield of reprogrammed cells and the underlying epigenetic barriers limit its potential. Epigenetic control of gene regulation is a primary factor in maintaining cellular identities. For instance, DNA methylation controls cell differentiation in adults, establishing that epigenetic factors are crucial for sustaining altered gene expression patterns with subsequent rounds of cell division. This study attempts to demonstrate that 5′AZA and miR-133a encapsulated in PLGA-PEI nanocarriers induce direct epigenetic reprogramming of cardiac fibroblasts to cardiomyocyte-like cells. The results present a cardiomyocyte-like phenotype following seven days of the co-delivery of 5′AZA and miR-133a nanoformulation into human cardiac fibroblasts. Further evaluation of the global DNA methylation showed a decreased global 5-methylcytosine (5-medCyd) levels in the 5′AZA and 5′AZA/miR-133a treatment group compared to the untreated group and cells with void nanocarriers. These results suggest that the co-delivery of 5′AZA and miR-133a nanoformulation can induce the direct reprogramming of cardiac fibroblasts to cardiomyocyte-like cells in-vitro, in addition to demonstrating the influence of miR-133a and 5′AZA as epigenetic regulators in dictating cell fate.  相似文献   
5.
A decrease in the miR-124 expression was observed in various epithelial cancers. Like a classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mechanisms play a significant role in the regulation of miR-124 expression and involve hypermethylation of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interactomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124 binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1) are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting partners may be considered promising targets for cancer therapy.  相似文献   
6.
7.
CRISPR/dCas9 is an important DNA modification tool in which a disarmed Cas9 protein with no nuclease activity is fused with a specific DNA modifying enzyme. A previous study reported that overexpression of the TET1 catalytic domain (TET1cd) reduces genome-wide methylation in Arabidopsis. A spontaneous naturally occurring methylation region (NMR19-4) was identified in the promoter region of the PPH (Pheophytin Pheophorbide Hydrolase) gene, which encodes an enzyme that can degrade chlorophyll and accelerate leaf senescence. The methylation status of NMR19-4 is associated with PPH expression and leaf senescence in Arabidopsis natural accessions. In this study, we show that the CRISPR/dCas9-TET1cd system can be used to target the methylation of hypermethylated NMR19-4 region to reduce the level of methylation, thereby increasing the expression of PPH and accelerating leaf senescence. Furthermore, hybridization between transgenic demethylated plants and hypermethylated ecotypes showed that the demethylation status of edited NMR19-4, along with the enhanced PPH expression and accelerated leaf senescence, showed Mendelian inheritance in F1 and F2 progeny, indicating that spontaneous epialleles are stably transmitted trans-generationally after demethylation editing. Our results provide a rational approach for future editing of spontaneously mutated epialleles and provide insights into the epigenetic mechanisms that control plant leaf senescence.  相似文献   
8.
Epigenetic modifications are known to regulate cell phenotype during cancer progression, including breast cancer. Unlike genetic alterations, changes in the epigenome are reversible, thus potentially reversed by epi-drugs. Breast cancer, the most common cause of cancer death worldwide in women, encompasses multiple histopathological and molecular subtypes. Several lines of evidence demonstrated distortion of the epigenetic landscape in breast cancer. Interestingly, mammary cells isolated from breast cancer patients and cultured ex vivo maintained the tumorigenic phenotype and exhibited aberrant epigenetic modifications. Recent studies indicated that the therapeutic efficiency for breast cancer regimens has increased over time, resulting in reduced mortality. Future medical treatment for breast cancer patients, however, will likely depend upon a better understanding of epigenetic modifications. The present review aims to outline different epigenetic mechanisms including DNA methylation, histone modifications, and ncRNAs with their impact on breast cancer, as well as to discuss studies highlighting the central role of epigenetic mechanisms in breast cancer pathogenesis. We propose new research areas that may facilitate locus-specific epigenome editing as breast cancer therapeutics.  相似文献   
9.
10.
In this study, we provide a systems biology method to investigate the carcinogenic mechanism of oral squamous cell carcinoma (OSCC) in order to identify some important biomarkers as drug targets. Further, a systematic drug discovery method with a deep neural network (DNN)-based drug–target interaction (DTI) model and drug design specifications is proposed to design a potential multiple-molecule drug for the medical treatment of OSCC before clinical trials. First, we use big database mining to construct the candidate genome-wide genetic and epigenetic network (GWGEN) including a protein–protein interaction network (PPIN) and a gene regulatory network (GRN) for OSCC and non-OSCC. In the next step, real GWGENs are identified for OSCC and non-OSCC by system identification and system order detection methods based on the OSCC and non-OSCC microarray data, respectively. Then, the principal network projection (PNP) method was used to extract core GWGENs of OSCC and non-OSCC from real GWGENs of OSCC and non-OSCC, respectively. Afterward, core signaling pathways were constructed through the annotation of KEGG pathways, and then the carcinogenic mechanism of OSCC was investigated by comparing the core signal pathways and their downstream abnormal cellular functions of OSCC and non-OSCC. Consequently, HES1, TCF, NF-κB and SP1 are identified as significant biomarkers of OSCC. In order to discover multiple molecular drugs for these significant biomarkers (drug targets) of the carcinogenic mechanism of OSCC, we trained a DNN-based drug–target interaction (DTI) model by DTI databases to predict candidate drugs for these significant biomarkers. Finally, drug design specifications such as adequate drug regulation ability, low toxicity and high sensitivity are employed to filter out the appropriate molecular drugs metformin, gefitinib and gallic-acid to combine as a potential multiple-molecule drug for the therapeutic treatment of OSCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号