首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4633篇
  免费   2043篇
  国内免费   184篇
电工技术   63篇
综合类   101篇
化学工业   1657篇
金属工艺   210篇
机械仪表   57篇
建筑科学   31篇
矿业工程   28篇
能源动力   395篇
轻工业   201篇
水利工程   3篇
石油天然气   47篇
武器工业   22篇
无线电   1092篇
一般工业技术   2829篇
冶金工业   43篇
原子能技术   17篇
自动化技术   64篇
  2024年   31篇
  2023年   283篇
  2022年   268篇
  2021年   541篇
  2020年   610篇
  2019年   647篇
  2018年   634篇
  2017年   740篇
  2016年   620篇
  2015年   595篇
  2014年   621篇
  2013年   510篇
  2012年   362篇
  2011年   231篇
  2010年   97篇
  2009年   40篇
  2008年   12篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1951年   9篇
排序方式: 共有6860条查询结果,搜索用时 15 毫秒
1.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
2.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
3.
NiO nanostructure was synthesized using a simple co-precipitation method and was embedded on reduced graphene oxide surface via ultrasonication. Structural investigations were made through X-ray diffraction (XRD) and functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR). XRD analysis revealed the grain size reduction with doping. Fourier transform infrared spectroscopy confirmed the presence of metal-oxygen bond in pristine and doped NiO nanostructure as well as the presence of carbon containing groups. Scanning electron microscopy (SEM) indicated that the particle size decreased when NiO nanostructure was doped with copper. BET surface area was found to increase almost up to 43 m2/g for Cu doped NiO nanostructure/rGO composite. Current-voltage measurements were performed using two probe method. UV–Visible spectroscopic profiles showed the blue and red shift for Cu doped NiO nanostructure and Cu doped NiO Nanostructure/rGO composite respectively. Rate constant for Cu doped NiO nanostructure/rGO composite found to increase 4.4 times than pristine NiO nanostructure.  相似文献   
4.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
5.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
6.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
7.
In this study, first-principles calculations were performed to investigate the catalytic effect of NiN4-G on the dehydrogenation of MgH2. Side-on MgH2 can be adsorbed stably on the NiN4-G monolayer and is preferentially adsorbed on the NiN4 site compared with the graphene site. The hydrogen desorption process, in which MgH2 dissociated to the Mg atom on the NiN4 site or graphene site and an H2 molecule in the vacuum, should overcome lower barriers than pure MgH2. This is because the corresponding Mg–H bond is weakened owing to the electron transfer between the Mg atom and the substrate. The hydrogen desorption enthalpies of the (MgH2)5 cluster on the NiN4 active and graphene sites are significantly smaller (0.11 eV and 1.50 eV, respectively) when H2+H2 is released from the cluster compared with those of the undoped MgH2 cluster (2.48 eV). Therefore, the NiN4-G monolayer can provide the double effect of the NiN4 active and graphene sites on improving the dehydrogenation performance of MgH2.  相似文献   
8.
This study focused on the large band gap of TiO2 for its use as a photocatalyst under light emitting diode (LED) light irradiation. The photocatalytic activities of core–shell structured Au@TiO2 nanoparticles (NPs), nitrogen doped Au@TiO2 NPs, and Au@TiO2/rGO nanocomposites (NCs) were investigated under various light intensities and sacrificial reagents. All the materials showed better photocatalytic activity under white LED light irradiation than under blue LED light. The N-doped core–shell structured Au@TiO2 NPs (Au@N–TiO2) and Au@TiO2/rGO NCs showed enhanced photocatalytic activity with an average H2 evolution rate of 9205 μmol h?1g?1 and 9815 μmol h?1g?1, respectively. All these materials showed an increasing rate of hydrogen evolution with increasing light intensity and catalyst loading. In addition, methanol was more suitable as a sacrificial reagent than lactic acid. The rate of hydrogen evolution increased with increasing methanol concentration up to 25% in DI water and decreased at higher concentrations. Overall, Au@TiO2 core–shell-based nanocomposites can be used as an improved photocatalyst in photocatalytic hydrogen production.  相似文献   
9.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
10.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号