首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60670篇
  免费   7251篇
  国内免费   3909篇
电工技术   5738篇
技术理论   1篇
综合类   4683篇
化学工业   14361篇
金属工艺   5728篇
机械仪表   2680篇
建筑科学   3405篇
矿业工程   1245篇
能源动力   2620篇
轻工业   3382篇
水利工程   651篇
石油天然气   2776篇
武器工业   953篇
无线电   7902篇
一般工业技术   7947篇
冶金工业   3314篇
原子能技术   611篇
自动化技术   3833篇
  2024年   311篇
  2023年   1193篇
  2022年   1674篇
  2021年   2087篇
  2020年   2214篇
  2019年   2088篇
  2018年   1874篇
  2017年   2284篇
  2016年   2300篇
  2015年   2275篇
  2014年   3304篇
  2013年   3472篇
  2012年   4044篇
  2011年   4111篇
  2010年   3071篇
  2009年   3315篇
  2008年   3087篇
  2007年   3815篇
  2006年   3622篇
  2005年   3112篇
  2004年   2630篇
  2003年   2463篇
  2002年   2160篇
  2001年   1899篇
  2000年   1684篇
  1999年   1288篇
  1998年   1106篇
  1997年   979篇
  1996年   771篇
  1995年   713篇
  1994年   621篇
  1993年   423篇
  1992年   424篇
  1991年   316篇
  1990年   264篇
  1989年   235篇
  1988年   129篇
  1987年   80篇
  1986年   69篇
  1985年   60篇
  1984年   62篇
  1983年   35篇
  1982年   46篇
  1981年   27篇
  1980年   32篇
  1979年   12篇
  1978年   6篇
  1977年   8篇
  1975年   6篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Studies on the deactivations and initiations of gas phase polymerizations of 1,3‐butadiene have been achieved by Monte Carlo simulation. Initiation and deactivation control the reaction before and after the peak of the polymerization rate, respectively. The influence of polymerization temperature has been studied. Monte Carlo modeling of polymerization kinetics and mechanism was confirmed by the agreement of experimental data and simulation results of polymerizations run with a temporary evacuation of monomer. The balance of catalysts and active chains is established by both initiation and chain transfer reactions with cocatalyst, which causes a ‘pseudo‐stability’ stage. © 2003 Society of Chemical Industry  相似文献   
2.
This paper presents a method to compensate voltage sags with minimum energy injection for a series‐connected voltage restorer using a micro‐SMES. A circuit for extracting the fundamental symmetrical components from sag voltages and a minimum energy injection algorithm is described. Simulations of voltage sag compensation have been carried out using PSCAD/EMTDC for various faults. The simulation results confirm the validity of the proposed method and show the possibility of reducing the size of energy storage devices. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(3): 70–80, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10047  相似文献   
3.
A novel series of temperature‐sensitive poly[(N‐isopropylacrylamide)‐co‐(ethyl methacrylate)] (p(NIPAM‐co‐EMA)) microgels was prepared by the surfactant‐free radical polymerization of N‐isopropylacrylamide (NIPAM) with ethyl methacrylate (EMA). The shape, size dispersity and volume‐phase transition behavior of the microgels were investigated by transmission electron microscopy (TEM), ultraviolet–visible (UV–Vis) spectroscopy, dynamic light scattering (DLS) and differential scanning calorimetry (DSC). The transmission electron micrographs and DLS results showed that microgels with narrow distributions were prepared. It was shown from UV–Vis, DLS and DSC measurements that the volume‐phase transition temperature (VPTT) of the p(NIPAM‐co‐EMA) microgels decreased with increasing incorporation of EMA, but the temperature‐sensitivity was impaired when more EMA was incorporated, causing the volume‐phase transition of the microgels to become more continuous. It is noteworthy that incorporation of moderate amounts of EMA could not only lower the VPTT but also enhance the temperature‐sensitivity of the microgels. The reason for this phenomenon could be attributed to changes in the complicated interactions between the various molecules. Copyright © 2004 Society of Chemical Industry  相似文献   
4.
The miscibility and phase behavior of ternary blends containing dimethylpolycarbonate (DMPC), tetramethylpolycarbonate (TMPC) and poly[styrene‐co‐(methyl methacrylate)] copolymer (SMMA) have been explored. Ternary blends containing polystyrene (PS) instead of SMMA were also examined. Blends of DMPC with SMMA copolymers (or PS) did not form miscible blends regardless of methyl methacrylate (MMA) content in copolymers. However, DMPC blends with SMMA (or PS) blends become miscible by adding TMPC. The miscible region of ternary blends is compared with the previously determined miscibility region of binary blends having the same chemical components and compositions. The region where the ternary blends are miscible is much narrower than that of binary blends. Based on lattice fluid theory, the observed phase behavior of ternary blends was analyzed. Even though the term representing the Gibbs free energy change of mixing for certain ternary blends had a negative value, blends were immiscible. It was revealed that a negative value of the Gibbs free energy change of mixing was not a sufficient condition for miscible ternary blends because of the asymmetry in the binary interactions involved in ternary blends. Copyright © 2004 Society of Chemical Industry  相似文献   
5.
Aiming at preparation of shape memory alloys (SMAs), we explored the SHS of Cu1 − x Zn1 − y Al1 − z alloys (0.29 < x < 0.30, 0.74 < y < 0.75, and 0.83 < z < 0.96). The most pronounced shape memory effect was exhibited by the alloys of the following compositions (wt %): (1) Cu(70.6)Zn(25.4)Al(4.0), (2) Cu(70.1)Zn(25.9)Al(4.0), and (3) Cu(69.9)Zn(26.1)Al(4.0). The effect of process parameters on the synthesis of CuZnAl alloys was studied by XRD, optical microscopy, and scanning electron microscopy (SEM). The grain size of CuZnAl was found to depend on the relative amount of the primary CuZn and AlZn phases. Changes in the transformation temperature and heat of transformation are discussed in terms of ignition intensity and compaction. Mechanism of the process depends on the level of the temperature attained relative to the melting point of components. At the melting point of AlZn, the process is controlled by the solid-state diffusion of AlZn into a product layer. The ignition temperature for this system depends on the temperature of the austenite-martensite transformation in CuZnAl alloys. The composition and structure of the products was found to markedly depend on process parameters. The SHS technique has been successfully used to prepare a variety of SMAs.   相似文献   
6.
The contribution of an oil phase to the agglomeration mechanisms of food powders was evaluated. Maltodextrin (DE 10), palm oil stearin and two palm oil oleins (up to 25% dry mass) were used as food models. Granulation runs were carried out in a pilot plant steam jet agglomerator. The powders containing oleins were more cohesive than those with stearin and the presence of oil changed the agglomeration mechanisms. The size increase mechanism of pure maltodextrin powder was controlled by surface plasticization and agglomerates with suitable instant properties were obtained. Small amount of oil degenerated drastically the rate of dispersion in water of the powders and their agglomerates but the average size and the mechanical resistance of the agglomerates increased when the oil content of the powders increased. SEM micrographs of agglomerates indicated that higher lipid content in the powders produced compact granules, favoring sinkability but hindering their disintegration. Agglomeration enhanced considerably the flowability of the particles containing oil. The dispersion behavior of the powders with higher lipid content could be correlated with the Hausner Number. A pre-agglomeration step favored the blend of the more cohesive powders producing larger and more resistant agglomerates.  相似文献   
7.
This is the first time an extensive investigation has been carried out regarding the effects of riser exit geometry on pressure drop and solid behaviour inside the Internal Circulating Fluidized Bed (ICFB) riser, using different riser exit geometries at several operating conditions.The Radioactive Particle-Tracking (RPT) technique was used for solid concentration measurements and solid residence time distribution at the exit zone. Experiments were conducted using Geldart B particles, in the gas superficial velocity range of 4 to 10 m/s. Axial solid hold-up, solid residence time distribution in the exit zone, and the reflux ratio factor km, (defined earlier by [E.H. Van der Meer, R.B. Thorpe, J.F. Davidson, Flow patterns in the square cross-section riser of a circulating fluidized bed and the effect of riser exit design, Chem. Eng. Sc. 55 (19) (2000) 4079-4099]), were the main criteria used to investigate the impact of gas-solid separator devices implemented at the ICFB riser exit.Solid residence time distribution results and axial solid hold-up profiles provided clear evidence that the separator device at the riser exit strongly influences the hydrodynamic structure of the ICFB riser. The V-shaped riser exit geometry was found to be the optimum of all the configurations studied.  相似文献   
8.
BACKGROUND: In the framework of biological processes used for waste gas treatment, the impact of the inoculum size on the start‐up performance needs to be better evaluated. Moreover, only a few studies have investigated the behaviour of elimination capacity and biomass viability in a two‐phase partitioning bioreactor (TPPB) used for waste gas treatment. Lastly, the impact of ethanol as a co‐substrate remains misunderstood. RESULTS: Firstly, no benefit of inoculation with a high cellular density (>1.5 g L?1) was observed in terms of start‐up performance. Secondly, the TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. The removal efficiency remained above 63% for an inlet concentration of 7 g isopropylbenzene (IPB) m?3 and at some time points reached 92% during an intermittent loading phase (10 h day?1), corresponding to a mean elimination capacity of 4 × 10?3 g L?1 min?1 (240 g m?3 h?1) for a mean IPB inlet load of 6.19 × 10?3 g L?1 min?1 (390 g m?3 h?1). Under continuous IPB loading, the performance of the TPPB declined, but the period of biomass acclimatisation to this operational condition was shorter than 5 days. The biomass grew to approximately 10 g L?1 but the cellular viability changed greatly during the experiment, suggesting an endorespiration phenomenon in the bioreactor. It was also shown that simultaneous degradation of IPB and ethanol occurred, suggesting that ethanol improves the biodegradation process without causing oxygen depletion. CONCLUSION: A water/silicone oil TPPB with ethanol as co‐substrate allowed the removal of a high inlet load of IPB during an experiment lasting 38 days. Copyright © 2008 Society of Chemical Industry  相似文献   
9.
In this work, the kinetics and mechanism of free-radical polymerisation of glycidyl methacrylate (GMA) using potassium peroxydisulphate (PDS) as water soluble initiator in the presence of synthesized 1, 4-Bis (tributyl methyl ammonium) benzene dichloride (TBMABDC) as multi-site phase transfer catalyst (MPTC) was studied. The polymerisation reactions were carried out under inert and unstirred conditions at constant temperature of 60 ± 1°C in cyclohexane/water biphase media. The role of concentrations of monomer, initiator, catalyst and volume fraction of aqueous phase, solvent polarity and temperature on the rate of polymerisation (Rp) was ascertained. The order with respect to monomer and initiator was found to be unity. The order with respect to catalyst was found to be 0.51. The rate of polymerisation is independent of ionic strength and pH of the medium. However, an increase in the polarity of solvent has slightly increased the Rp value. Based on the results obtained, a suitable kinetic scheme has been proposed to account for the experimental observations and its significance discussed.  相似文献   
10.
BACKGROUND: The application of lipase‐rich enzyme pools (such as the crude solid enzymatic preparation (SEP) obtained from Penicillium restrictum solid‐state fermentation of agro‐industrial wastes) to activated sludge systems may be an effective strategy for preventing various operational problems. The continuous addition of SEP to the treatment system can become cost‐prohibitive when in situ production and/or storage are factored in. The application of SEP to high‐fat wastewater treatment would only be justified as an emergency measure, such as a sudden increase in the fat content of the bioreactor influent. Therefore, the primary objective of this work was to investigate the efficiency of a crude SEP during fat shock loads, simulated through the periodic addition of dairy industry waste containing high fat concentrations to the feed stock of an activated sludge system, operated in continuous mode. RESULTS: The test bioreactor exhibited a higher average chemical oxygen demand (COD) removal efficiency than the control bioreactor (83% for control and 90% for test) and the fat accumulation in the biological flocs of the test bioreactor was 3.2 times lower than that in the control bioreactor. Turbidity was also lower in the effluent of the test bioreactor (123 and 66 FTU in control and test, respectively) and it had a shorter recovery time between shock loads, especially when the interval between loads was shorter than one month (biweekly and weekly shock loads). CONCLUSION: The addition of SEP during fat overloads in the reactor feed maintained efficient COD removal in the test bioreactor for 270 days without any operational problems. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号