排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
2.
邓箴 《计算机光盘软件与应用》2010,(10):18-18
传统基于DOM的信息抽取方法采用路径作为抽取规则,由于规则过于单一,因此效果并不十分理想。本文从相似页面的获取出发,逐步介绍了基于DOM采用特征比较法进行信息抽取的过程,最后还给出了针对多记录网页抽取时的试探策略、实验证明,该方法可以有效地抽取出网页中的数据。 相似文献
3.
考虑现有图割算法没有充分考虑红外图像的模糊特性,分割精度和运行效率低的缺点,提出了基于快速递推模糊2-划分熵图割的红外图像分割算法以实现复杂背景下红外图像的自动高效分割。该方法利用图像感兴趣区域的最大模糊熵信息设计图割能量函数的似然能,基于局部最大模糊2-划分熵值迭代检测出包含图像最大信息的感兴趣区域来确保提取目标信息的完整性。为了提高最大模糊熵寻优的效率,引入时间复杂度为O(n2)的递推算法,将模糊熵计算转化为递推过程,并保存所有递推的熵函数值用于后续的穷举寻优。针对确定的感兴趣区域,利用该区域最大模糊2-划分时隶属度函数分布设置图割能量函数的似然能,从而充分考虑图像的模糊特性。对分割结果与几种常用的算法进行了视觉比较及运行时间,错分率,F指标的量化分析。结果表明:该算法分割精度F值高达95%,运行时间较其他常用算法至少缩短了72%,基本满足自动红外图像分割对精度、效率和鲁棒性的要求。 相似文献
4.
随着网络的普及和发展,使用网上电子本文的越来越普遍,信息抽取技术可以帮助人们在信息世界更方便找到需要的信息,本文对信息抽取中几个关键技术进行了简要的研究. 相似文献
5.
提出了一种基于词汇链抽取,文法分析的抽取文本代表词条的多文档摘要生成的方法。通过计算词义相似度构建词汇链,结合词频与位置特征进行文本代表词条成员的选择,将含有词条权值高的句子经过聚类形成多文档文摘句集合,然后进行质心句的抽取和排序,生成多文档文摘。该方法不仅考虑了词汇之间的语义信息,还考虑了词条对文本的代表成度,能够改善文摘句抽取的性能。实验结果表明,与单纯的由关键词确定文摘的方法相比,召回率和准确率都有不少的提高。 相似文献
6.
目的 针对现有区域合并和图割的结合算法没有考虑矿岩图像模糊特性,导致分割精度和运行效率较低,模糊边缘无法有效分割的问题,利用快速递推计算的最大模糊2-划熵信息设置以区域为顶点的图割模型似然能来解决。方法 首先利用双边滤波器和分水岭算法对矿岩图像进行预处理,并将其划分为若干一致性较好的区域;然后利用图像在计算最大模糊2-划分熵时,目标和背景的模糊隶属度函数来设计图割能量函数似然能,使得能量函数更接近模糊图像的真实情况,期间为了提高最大模糊2-划分熵值的搜索效率,提出了时间复杂度为O(n2)的递推算法将模糊熵的计算转化为递推过程,并保留不重复的递推结果用于后续的穷举搜索;最后利用设计的图割算法对区域进行标号,以完成分割。结果 本文算法的分割精度较其他区域合并和图割结合算法提高了约23%,分割后矿岩颗粒个数的统计结果相对于人工统计结果,其误差率约为2%,运行时间较其他算法缩短了约60%。结论 本文算法确保精度同时,有效提高矿岩图像的分割效率,为自动化矿岩图像高效分割的工程实践提供重要指导依据。 相似文献
7.
在关键词抽取方法研究中,提出了多步骤的,针对任意领域的文本关键词抽取方法.该方法采用多元文法进行候选关键词抽取,提出了基于语言学特征的扩展tf/idf关键词的加权计算方法,以及能够抽取未登录词的关键词的方法和对关键词抽取进行优化的策略.首次提出了用支持向量机对最后的抽取结果进行优化.实验结果表明,该方法与单纯的tf/idf算法相比,具有更高的查准率和查全率. 相似文献
8.
用模拟退火改进的KNN分类算法 总被引:2,自引:0,他引:2
KNN(k Nearest Neighbor)算法是1种简单、有效、非参数的文本分类法,但缺点是样本相似度的计算量大,故不适用于有大量高维样本的文本。一方面,本文分析了KNN算法的优点和缺陷,采用了1种应用特征词提取和特征词聚合的方法来改进KNN算法在特征词提取方面的不足。另一方面,本文又深入研究了模拟退火算法思想,采用退火模拟思想的典型优化组方法和模拟退火算法原理来加快KNN算法的分类速度。最后,通过2种方法的加入改进了KNN分类算法。实验结果表明,本文提出的方法大大提高了分类算法的效率和性能。 相似文献
9.
10.
为提升复杂交通场景下天气识别准确率的同时实现网络轻量化,提出了一种结合改进ConvNeXt网络与知识蒸馏的天气识别方法。首先,在ConvNeXt网络的每组Block特征提取块后加入SimAm注意力机制,构建ConvNeXt_F网络,利用SimAm注意力机制对Block块提取的深层特征进行鉴权并校正权重,有效强化对天气判别性特征的捕获能力;其次,在网络训练过程中将Equalized Focal Loss(EFL)与Mutual-Channel Loss(MCL)采用平均占比的方式进行累加作为总损失函数,一方面利用EFL消除数据不均衡造成的影响,另一方面利用MCL减小同类天气下局部细节特征差异;最后,采用知识蒸馏技术将天气分类知识从ConvNeXt_F网络迁移到轻量级MobileNetV3网络,虽然精度略微损失但网络参数量大幅减少。实验结果表明,与其他算法相比,所提方法在本文构建的宁夏高速公路场景下的天气数据集weather-traffic和公开的自然天气数据集RSCM2017上准确率分别达到96.22%,84.8%,FPS分别达到157.6 Hz,137.6 Hz,FLOPs和Param... 相似文献
1