A feasibility analysis methodology adopted from reactive distillation is applied to membrane reactors. A model is formulated to depict the reactive liquid phase composition on the retentate side of a continuous type membrane reactor. The effects of both the chemical reaction kinetics and the membrane mass transfer kinetics on the feasible products are elucidated by means of retentate phase diagrams and bifurcation analysis. The proposed method can be applied to various membrane processes, independent of the specific structure of the membrane. Two quaternary reaction systems are considered to illustrate the methodology. In the first hypothetical system, it is shown how selective membranes can influence the sequence of effective volatilities which in turn affects the feasible products of the system. In the second example of practical importance, i.e. the heterogeneously catalysed synthesis of propyl acetate coupled with permeation through a porous polycarbonate membrane, the dusty gas model is applied to describe the component fluxes through the membrane. For the latter reaction system, the existence of reactive arheotrope is demonstrated. Arheotropes represent mass transfer controlled feasible products of membrane separation process. 相似文献
This paper describes an approach, conceptual framework, and software architecture for dynamic reconfiguration of the order picking system. The research and development project was sponsored by the Material Handling Research Center (MHRC), a National Science Foundation sponsored Cooperative Industry/University Research Center. The storage configuration is assumed to be an in-the-aisle order picking system in which stockkeeping units (SKUs) can occupy variable capacity storage locations and stock-splitting is allowed among zones (clusters). The product mix may include multiple product families with different life cycles, correlated demand within families and commonality of demand across families. 相似文献
Phase separation during polymerization was studied in a model system consisting of a diepoxide based on diglycidyl ether of bisphenol A (DGEBA), variable amounts of ethylenediamine (EDA) and the mass of castor oil (CO) necessary to obtain a mass fraction equal to 0-15 in a final system where the stoichiometric ratio of amine to epoxy equivalents, r, was equal to 1. A two-step polymerization process was performed by curing first a system with r = 0-5, during variable times before phase separation, and then carrying the system to r = 1. Thermodynamic analysis of samples with different r values led to a linear relationship between the Flory-Huggins interaction parameter and r. The concentration (P) and average size (D?) of dispersed-phase particles followed opposite trends, i.e. P increased while D? decreased, when either r was increased or the time of curing in the first step of a two-step process was decreased. This was explained by assuming that the competition between nucleation and growth was determined by the viscosity at the cloud point, ηcp. Low values of ηcp favoured growth over nucleation and led to fewer but larger particles. 相似文献
This paper concerns the following problem: given a set of multi-attribute records, a fixed number of buckets and a two-disk system, arrange the records into the buckets and then store the buckets between the disks in such a way that, over all possible orthogonal range queries (ORQs), the disk access concurrency is maximized. We shall adopt the multiple key hashing (MKH) method for arranging records into buckets and use the disk modulo (DM) allocation method for storing buckets onto disks. Since the DM allocation method has been shown to be superior to any other allocation methods for allocating an MKH file onto a two-disk system for answering ORQs, the real issue is knowing how to determine an optimal way for organizing the records into buckets based upon the MKH concept.
A performance formula that can be used to evaluate the average response time, over all possible ORQs, of an MKH file in a two-disk system using the DM allocation method is first presented. Based upon this formula, it is shown that our design problem is related to a notoriously difficult problem, namely the Prime Number Problem. Then a performance lower bound and an efficient algorithm for designing optimal MKH files in certain cases are presented. It is pointed out that in some cases the optimal MKH file for ORQs in a two-disk system using the DM allocation method is identical to the optimal MKH file for ORQs in a single-disk system and the optimal average response time in a two-disk system is slightly greater than one half of that in a single-disk system. 相似文献
As the result of vibration emission in air, a machine sound signal carries important information about the working condition
of machinery. But in practice, the sound signal is typically received with a very low signal-to-noise ratio. To obtain features
of the original sound signal, uncorrelated sound signals must be removed and the wavelet coefficients related to fault condition
must be retrieved. In this paper, the blind source separation technique is used to recover the wavelet coefficients of a monitored
source from complex observed signals. Since in the proposed blind source separation (BSS) algorithms it is generally assumed
that the number of sources is known, the Gerschgorin disk estimator method is introduced to determine the number of sound
sources before applying the BSS method. This method can estimate the number of sound sources under non-Gaussian and non-white
noise conditions. Then, the partial singular value analysis method is used to select these significant observations for BSS
analysis. This method ensures that signals are separated with the smallest distortion. Afterwards, the time-frequency separation
algorithm, converted to a suitable BSS algorithm for the separation of a non-stationary signal, is introduced. The transfer
channel between observations and sources and the wavelet coefficients of the source signals can be blindly identified via
this algorithm. The reconstructed wavelet coefficients can be used for diagnosis. Finally, the separation results obtained
from the observed signals recorded in a semi-anechoic chamber demonstrate the effectiveness of the presented methods . 相似文献
The free energies of mixing of two networks in the interpenetrating polymer network based on crosslinked polyurethane and poly(ester acrylate) have been determined by the vapour sorption method. It was established that the constituent networks in the IPN are not miscible. The introduction of fillers of different chemical nature increases the compatibility. The thermodynamic affinity of the fillers to the individual networks and IPN was estimated. It was established that when the free energy of interaction of one or both components of the IPN with the filler is negative, reinforcement leads to the formation of a compatible and equilibrium system. For fillers having no affinity to the polymers, compatibilization is observed, which is connected with slowing down of phase separation in the system in the presence of filler. 相似文献
In this paper, genetic algorithm is used to help improve the tolerance of feedforward neural networks against an open fault. The proposed method does not explicitly add any redundancy to the network, nor does it modify the training algorithm. Experiments show that it may profit the fault tolerance as well as the generalisation ability of neural networks.相似文献