首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学工业   1篇
能源动力   2篇
  2022年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 3 毫秒
1
1.
界面追踪方法-VOSET(coupled Volume-of-Fluid and Level Set method)结合了VOF和Level Set两种方法的优点,克服了这两种方法的缺点.VOSET方法采用VOF方法捕捉两相间的界面,保持了两相间的质量守恒,克服了Level Set方法质量不守恒的缺点;利用几何计算方法...  相似文献   
2.
A coupled volume-of-fluid and level set (VOSET) method, which combines the advantages and overcomes the disadvantages of VOF and LS methods, is presented for computing incompressible two-phase flows. In this method VOF method is used to capture interfaces, which can conserve the mass and overcome the disadvantage of nonconservation of mass in LS method. An iterative geometric operation proposed by author is used to calculate the level set function ? near interfaces, which can be applied to compute the accurate curvature κ and smooth the discontinuous physical quantities near interfaces. By using the level set function ? the disadvantages of VOF method, inaccuracy of curvature and bad smoothness of discontinuous physical quantities near interfaces, can be overcome. Finally the computing results made with VOSET method are compared with those made with VOF and LS methods.  相似文献   
3.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号