排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Niken Indrati Punnanee Sumpavapol Rajnibhas Sukeaw Samakradhamrongthai Natthaporn Phonsatta Patcha Poungsombat Sakda Khoomrung Atikorn Panya 《International Journal of Food Science & Technology》2022,57(6):3760-3770
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference. 相似文献
2.
Natthaporn Chatchavanthatri Tiraporn Junyusen Weerachai Arjharn Tawarat Treeamnuk Payungsak Junyusen Phakkhananan Pakawanit 《Journal of Food Processing and Preservation》2021,45(11):e15892
This research investigated the physicochemical properties, bioactive compounds, and microstructure of brown rice (BR) and non-parboiled and parboiled germinated brown rice (GBR and PGBR). The GBR and PGBR were treated by sun, hot-air oven, or infrared irradiation (IR) drying. The results showed that IR drying enhanced the bioactive compounds of non-parboiled GBR, including γ-aminobutyric acid, α-tocopherol, and total phenolic compounds, while γ-oryzanol and antioxidant activity were comparable to BR. Meanwhile, IR drying significantly improved the head rice yield (HRY) of PGBR while reducing fissured grains. Parboiling also affected the color values of rice grains, suggesting the diffusion of husk color into endosperm and the formation of brown polymers by the Maillard reaction. In addition, IR drying altered the internal structure of rice grains, resulting in abundant intercellular voids. Specifically, the IR-dried non-parboiled GBR significantly enhanced essential bioactive compounds and improved HRY while maintaining the color of standard BR. 相似文献
3.
Praphatsorn Plerdsranoy Natthaporn Thaweelap Yingyot Poo-arporn Patcharaporn Khajondetchairit Suwit Suthirakun Ittipon Fongkaew Narong Chanlek Oliver Utke Autchara Pangon Rapee Utke 《International Journal of Hydrogen Energy》2021,46(7):5427-5440
Hierarchical carbon scaffold (HCS) with multi-porous structures, favoring hydrogen diffusion and physisorption is doped with 2–10 wt % Ni for storing hydrogen at ambient temperature. Due to N- and O-rich structure of melamine-formaldehyde resin used as carbon precursor, homogeneous distribution of heteroatoms (N and O) in HCS is achieved. 2 wt % Ni-doped HCS shows the highest hydrogen capacity up to 2.40 wt % H2 (T = 298 K and p (H2) = 100 bar) as well as excellent reversibility of 18.25 g H2/L and 1.25 wt % H2 (T = 298 K and p (H2) = 50 bar) and electrical production from PEMFC stack up to 0.7 Wh upon eight cycles. Computations and experiments confirm strong interactions between Ni and heteroatoms, leading to uniform distribution small particles of Ni. This results in enhancing reactive surface area for hydrogen adsorption and preventing agglomeration of Ni nanoparticles upon cycling. Ni K-edge XANES spectra simulated from the optimized structure of Ni-doped N/O-rich carbon using DFT calculations are consistent with the experimental spectra and suggest electron transfer from Ni to hydrogen to form Ni–H bond upon adsorption. Considering low desorption temperature (323 K), not only chemisorbed hydrogen is involved in adsorption mechanisms but also physisorption and spillover of hydrogen. 相似文献
4.
Natthaporn Thaweelap Puttimate Thongtan Chongsutthamani Sitthiwet Sophida Thiangviriya Priew Eiamlamai Rapee Utke 《International Journal of Hydrogen Energy》2017,42(39):24915-24926
De/rehydrogenation kinetics and reversibility of MgH2 are improved by doping with activated carbon nanofibers (ACNF) and compositing with LiBH4. Via doping with 5 wt % ACNF, hydrogen absorption of Mg to MgH2 (T = 320 °C and p(H2) = 50 bar) increases from 0.3 to 4.5 wt % H2. Significant reduction of onset dehydrogenation temperature of MgH2 to 340 °C (ΔT = 70 °C as compared with pristine MgH2) together with 6.8–8.2 wt % H2 can be obtained by compositing Mg-5 wt. % ACNF with LiBH4 (LiBH4:Mg mole ratios of 0.5:1, 1:1, and 2:1). During dehydrogenation of Mg-rich composites (0.5:1 and 1:1 mol ratios), the formation of MgB2 and Mg0.816Li0.184 implying the reaction between LiBH4 and MgH2 favors kinetic properties and reversibility, while the composite with 2:1 mol ratio shows individual dehydrogenation of LiBH4 and MgH2. For up-scaling to hydrogen storage tank (~120 times greater sample weight than laboratory scale) of the most suitable composite (1:1 mol ratio), de/rehydrogenation kinetics and hydrogen content released at all positions of the tank are comparable and approach to those from laboratory scale. Due to high purity (100%) and temperature of hydrogen gas from hydride tank, the performance of single proton exchange membrane fuel cell enhances up to 30% with respect to the results from compressed gas tank. 相似文献
5.
Puttimate Thongtan Palmarin Dansirima Sophida Thiangviriya Natthaporn Thaweelap Apirak Suthummapiwat Praphatsorn Plerdsranoy Rapee Utke 《International Journal of Hydrogen Energy》2018,43(27):12260-12270
By doping with 5 wt % TiF4 and activated carbon (AC), onset and main dehydrogenation temperatures of MgH2 significantly reduce (ΔT = 138 and 109 °C, respectively) with hydrogen capacity of 4.4 wt % H2. Up-scaling to storage tank begins with packing volume and sample weight of 28.8 mL and ~14.5 g, respectively, and continues to 92.6 mL and ~60.5–67 g, respectively. Detailed hydrogen sorption mechanisms and kinetics of the tank tightly packed with four beds of MgH2TiF4-AC (~60.5 g) are investigated. De/rehydrogenation mechanisms are detected by three temperature sensors located at different positions along the tank radius, while hydrogen permeability is benefited by stainless steel mesh sheets and tube inserted in the hydride beds. Fast desorption kinetics of MgH2TiF4-AC tank at ~275–283 °C, approaching to onset dehydrogenation temperature of the powder sample (272 °C) suggests comparable performances of laboratory and tank scales. Hydrogen desorption (T = 300 °C and P(H2) = 1 bar) and absorption (T = 250 °C and P(H2) = 10–15 bar) of MgH2TiF4-AC tank provide gravimetric and volumetric capacities during the 1st-2nd cycles of 4.46 wt % H2 and 28 gH2/L, respectively, while those during the 3rd-15th cycles are up to 3.62 wt % H2 and 23 gH2/L, respectively. Due to homogeneous heat transfer along the tank radius, de/rehydrogenation kinetics superior at the tank center and degrading forward the tank wall can be due to poor hydrogen permeability. Particle sintering and/or agglomeration upon cycling yield deficient hydrogen content reproduced. 相似文献
6.
Natthaporn Limpan Thummanoon Prodpran Soottawat Benjakul Surasit Prasarpran 《Journal of food engineering》2010
Effects of the ratios of fish myofibrillar protein (FMP) from bigeye snapper (Priacanthus tayenus) to polyvinyl alcohol (PVA) (FMP:PVA; 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10) and pH levels (3 and 11) on the properties of resulting films were investigated. Both tensile strength (TS) and elongation at break (EAB) of films increased with increasing PVA content (p < 0.05). When PVA was incorporated up to 40%, films prepared at pH 11 had the higher TS than did those prepared at pH 3 (p < 0.05). However, as PVA content was greater than 40%, films prepared at pH 3 exhibited the higher TS than did those prepared at pH 11 (p < 0.05). Water vapor permeability (WVP) of the films prepared at pH 3 increased when PVA content increased up to 40% and decreased with further increases in PVA content (p < 0.05). PVA films had the higher TS, EAB and WVP than did FMP films and FMP/PVA blend films prepared at both pHs. Films exhibited the increased L∗ and a∗ values but decreased b∗ value with increasing PVA content at both pHs. Films prepared at pH 11 showed higher b∗ value than did those prepared at pH 3 when PVA content was greater than 40% (p < 0.05). FMP/PVA blend films exhibited the negligible transmission to the UV light. At pH 3, light transmission of the films increased as PVA content increased (p < 0.05). At all FMP/PVA ratios, films prepared at pH 11 were less transparent than those prepared at pH 3 (p < 0.05). Therefore, blend composition and pH level influenced the properties of FMP/PVA blend films. 相似文献
7.
8.
Natthaporn Limpan Thummanoon Prodpran Soottawat Benjakul Surasit Prasarpran 《Food Hydrocolloids》2012
Biodegradable blend films based on fish myofibrillar protein (FMP) and poly(vinyl alcohol) (PVA) were prepared and characterized. PVA with different degrees of hydrolysis (DH) and molecular weights (MW) had the impact on properties of FMP/PVA (1:1, w/w) blend film. The blend films with higher MW of PVA were more tensile resistant, as indicated by the greater tensile strength (TS) and elongation at break (EAB), while the films with PVA of lower DH were more flexible. The blend film with PVA-BP26 (DH: 86–98% mol; MW: 124,000–130,000 g/mol) exhibited the greatest tensile performance and the lowest water vapor permeability (p < 0.05), compared with other films. SEM and FTIR results revealed that FMP and PVA were compatible and their intermolecular interaction was enhanced, providing the blend film with desirable properties. Therefore, incorporation of PVA with appropriated DH and MW could improve the properties of the FMP-based film. 相似文献
9.
Well-defined pH- and thermo- multi-responsive fluorescent micelles based on the self-assembly of diblock copolymers poly[(N-isopropyl-acrylamide-co-N-vinylcarbazole)-b-2-(dimethylamino)ethyl acrylate], (PNIPAAM-co-PNVC)-b-PDMAEA, are described. The diblock copolymers are prepared via the reversible addition fragmentation chain transfer (RAFT) copolymerization of N-isopropyl-acrylamide (NIPAAM) and N-vinylcarbazole (NVC) followed by chain extension in presence of 2-(dimethylamino)ethyl acrylate) (DMAEA). The micelles are formed in aqueous solutions in a wide range of temperature (25-60 °C), and their sizes increase from 40 to 65 nm when varying pH from basic to acidic. The cross-linking of the PDMAEA-containing shell with 1,2-bis(2-iodoethoxy)ethane (BIEE) results in spherical soft nanoparticles which size is increased by 20-25% when compared to the micelles. The presence of NVC in concentrations as low as 4% in the core of the micelles allow the nanoparticles to be tagged by fluorescence, making them well suited for therapeutic applications. 相似文献
10.
Manat Chaijan Tanutchaporn Rodsamai Sawanya Charoenlappanit Sittiruk Roytrakul Atikorn Panya Natthaporn Phonsatta Ling-Zhi Cheong Worawan Panpipat 《International Journal of Food Science & Technology》2022,57(2):1083-1092
The antioxidant activity and stability of endogenous peptides isolated from farmed hybrid catfish (Clarias macrocephalus × Clarias gariepinus) muscle (EPC) were characterised. EPC contained 69 peptides with 8–24 amino acid residues, varying hydrophobic amino acid (HBA) content and distinct sequences. Among the top five, peptides discovered in EPC were ARHSYGMLYCSCPPND, DTQAARKSDDDD, AEFPCGDRRC, AAVTEELFFAGL and LILQRRKFLRMKREKYGFIYKTHL. Histidine (16.33%) and tryptophan (15.66%) were the most common amino acids found in EPC. EPC demonstrated concentration-dependent free radical (DPPH•/ABTS•+) and hydroxyl radical (OH•) scavenging activities, as well as metal chelating ability. The effect of pH, heating temperature and in vitro digestion on EPC's DPPH• scavenging activity was studied. Lowering the pH and increasing the heating temperature to 90 °C increased the DPPH• inhibitory activity. However, after in vitro digestion, around 44% of DPPH• inhibition was reduced. The findings confirmed that farm-raised hybrid catfish muscle contained endogenous peptides with antioxidant properties. 相似文献