首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14801篇
  免费   1204篇
  国内免费   346篇
电工技术   163篇
综合类   996篇
化学工业   1452篇
金属工艺   4503篇
机械仪表   4398篇
建筑科学   98篇
矿业工程   495篇
能源动力   177篇
轻工业   274篇
水利工程   57篇
石油天然气   411篇
武器工业   159篇
无线电   212篇
一般工业技术   1879篇
冶金工业   880篇
原子能技术   35篇
自动化技术   162篇
  2025年   179篇
  2024年   513篇
  2023年   456篇
  2022年   482篇
  2021年   544篇
  2020年   572篇
  2019年   492篇
  2018年   521篇
  2017年   656篇
  2016年   597篇
  2015年   523篇
  2014年   592篇
  2013年   601篇
  2012年   747篇
  2011年   751篇
  2010年   601篇
  2009年   687篇
  2008年   567篇
  2007年   848篇
  2006年   879篇
  2005年   645篇
  2004年   635篇
  2003年   497篇
  2002年   436篇
  2001年   379篇
  2000年   312篇
  1999年   256篇
  1998年   233篇
  1997年   241篇
  1996年   202篇
  1995年   178篇
  1994年   114篇
  1993年   73篇
  1992年   78篇
  1991年   56篇
  1990年   45篇
  1989年   45篇
  1988年   39篇
  1987年   23篇
  1986年   6篇
  1985年   13篇
  1984年   14篇
  1983年   8篇
  1982年   13篇
  1981年   1篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
研究了Al2O3-TiB2陶瓷刀具材料在1000℃下的氧化行为,用XRD、SEM分析了氧化后的相组成及显微结构。结果表明:Al2O3-TiB2陶瓷材料在1000℃空气中氧化增重符合抛物线规律;随TiB2含量的增加,该材料的抗氧化能力下降。  相似文献   
2.
Given that fretting wear causes failure in steel wires, we carried out tangential fretting wear tests of steel wires on a self-made fretting wear test rig under contact loads of 9 and 29 N and fretting amplitudes ranging from 5 to 180 μm. We observed morphologies of fretted steel wire surfaces on an S-3000N scanning electron microscope in order to analyze fretting wear mecha-nisms. The results show that the fretting regime of steel wires transforms from partial slip regime into mixed fretting regime and gross slip regime with an increase in fretting amplitudes under a given contact load. In partial slip regime, the friction coefficient has a relatively low value. Four stages can be defined in mixed fretting and gross slip regimes. The fretting wear of steel wires in-creases obviously with increases in fretting amplitudes. Fretting scars present a typical morphology of annularity, showing slight damage in partial slip regime. However, wear clearly increases in mixed fretting regime where wear mechanism is a combination of plastic deformation, abrasive wear and oxidative wear. In gross slip regime, more severe degradation is present than in the other regimes. The main fretting wear mechanisms of steel wires are abrasive wear, surface fatigue and friction oxidation.  相似文献   
3.
Accelerated electrospark deposition and the wear behavior of coatings   总被引:5,自引:0,他引:5  
Electrospark deposition (ESD) is a coating process that is featured by low heat input to the substrate. Low coating efficiency and other limitations influence its wider application. The present paper introduces newly designed ESD equipment, by which a higher coating rate can be reached. The relationship among coating thickness, surface roughness, and process parameters such as pulse energy, pulse frequency, and deposition time are presented. Electrospark deposition coating by the new equipment on AISI 1045 steel (with WC-8% Co as electrode) increases the wear resistance by 5 to 8 times. The micromechanism is investigated by scanning electron microscopy observation.  相似文献   
4.
Investigations of wear in sliding friction of WC-Hadfield steel hard alloy against cast tool steel have been carried out in a broad range of velocities and pressure values. Structural and phase composition variations have been revealed. Friction-affected zone was found to be 450 μm in depth. Structural γ → α, γ → transformation regions are located within 100 μm of the surface. These transformations contributed to the total solid solution deformation hardening.  相似文献   
5.
采用烧结方法制备得到纳米α-Fe_2O_3,利用X射线衍射仪(XRD)和透射电镜(TEM)对样品进行了表征,研究了纳米α-Fe_2O_3作为液体石蜡添加剂的摩擦磨损性能。结果表明,添加纳米添加剂后,润滑油摩擦系数改变不明显,但磨损率显著降低。磨损率与纳米α-Fe_2O_3添加剂的表面积和添加量密切相关,当纳米材料的表面积为47m~2/g时磨损率最低,磨损率值降低为3.78×10~(-15) m~2/g;添加量为1.0wt%,润滑油磨损率最低。  相似文献   
6.
A slider-slab sliding model for hard-to-soft and soft-to-soft sliding systems with abrasive and non-abrasive wear conditions is used to investigate atomic-scale friction. The molecular dynamics simulation uses the Morse potential to calculate interatomic forces between atoms. Separation distance between the slider and the slab is changed to simulate repulsive and attractive interactive force fields exerted on interface between two sliding components. Effects of the interaction potential parameters on the sliding friction are investigated. The relationship of frictional force, normal force and temperature rise of the slider and the slab during sliding are established. Comparison of the hard-to-soft and the soft-to-soft sliding system are carried out and shows different tribological phenomena.  相似文献   
7.
The author reviews selected experimental results which have contributed to improved understanding of sliding wear processes. The emphasis is on the chemical and structural changes which occur at and near the surface of metallic materials during sliding in different environments. The importance of plastic deformation, fracture, transfer, mechanical mixing, phase transformations and oxidation is discussed. Examples of transitions are described, and interesting correlations noted. In selecting the content of this paper, the author includes controversial results and conclusions and raises questions about the development of wear equations, interpretations of the wear coefficient, the importance of adhesion, the roles of hardness, the causes of transitions and the location of debris-producing cracks.  相似文献   
8.
This paper investigates the effect of coolant concentration on tool performance when machining nickel-base, C-263, alloy with triple coated (TiN/TiCN/TiN) carbide insert at various (3–9%) coolant concentrations and under different cutting speed conditions. Tool life, tool-failure modes, wear rates, component forces and surface finish generated during machining were recorded, analyzed and used to formulate mechanisms responsible for tool wear at the cutting conditions investigated. Analysis of the recorded data shows that tool performance during machining is dependent on coolant concentration. 6% coolant concentration gave the best overall performance as effective combination of cooling and lubrication functions were achieved during machining. Increasing coolant concentration to 9% reduced tool performance due to a reduction of the tool-chip contact length area and the consequent increase in compressive stresses at the tool-chip and tool-workpiece interfaces. This action often leads to pronounced chipping of the tool cutting edge during machining. Friction coefficient between the workpiece material and substrate increases once the coating layer(s) is broken as a result of the direct contact between the tool substrate and the work material. This action increases mechanical wear of the tool, which in turn leads to a significant increase in the cutting force with negligible effect on the feed forces during machining.  相似文献   
9.
Scanning electron microscope (SEM) tribometric data on polycrystalline silicon (poly-Si) vs. poly-Si, Si(100) vs. Si(100) and Si(111) vs. Si(111) interfaces, obtained in Torr and in 0.2 Torr partial pressure of hydrogen gas ( ) from room temperature to 850°C, were performed under standard and much slower thermal ramping rates. The friction data were analyzed per the methodology described in part I of this paper series. The results indicate a highly beneficial friction- and wear-reducing regime within a relatively narrow thermal region. This desirable region coincides with some chemisorption of excited species of molecular hydrogen just before the mass thermal desorption of surface hydrides. These data represent the tribochemical equivalent of a method routinely used in electronics, whereby deep electron traps (dangling Si bonds) are passivated by baking in molecular hydrogen. The also exerts a moderating influence on the size of the friction noise at all test temperatures. However, the general level of friction beyond the beneficial thermal region is high. In parallel, the general wear rate of Si representative of the entire range of standard thermal ramping in both atmospheric environments is in the extremely high 10-12m3/(N m) range. Operating strictly in the beneficial, low-friction thermal regime resulted in a several orders-of-magnitude reduction in the wear rate over those measured under standard thermal ramping conditions. Although the results confirm previous findings that Si is not a good material of construction for miniaturized moving mechanical assemblies (e.g., microbearings and gears), there seems to be some limited possibility of gas-phase lubrication of Si micromechanisms with rarefied hydrogen at surface temperatures between 100 and 300°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
树脂浸渍补充增密对C/C复合材料摩擦磨损性能的影响   总被引:3,自引:0,他引:3  
将CVD预增密至不同初始密度的C/C复合材料进行树脂浸渍/炭化补充增密至1.85g/cm^3,热处理后进行热物理性能的检测和不同刹车压力的摩擦磨损试验。结果表明,树脂浸渍/炭化是一种行之有效的快速致密化手段,所得制品的可石墨化性较好,导热性能也满足国外同类产品的要求;摩擦磨损试验和扫描电镜(SEM)观察结果表明,低一压力下形成的磨屑粒度明显大于高压下的磨屑,因而低压下的摩擦数高于高刹车压力下的摩擦系数。低压下的树脂炭对摩擦磨损的影响相对较大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号