全文获取类型
收费全文 | 29266篇 |
免费 | 2870篇 |
国内免费 | 1768篇 |
专业分类
电工技术 | 1050篇 |
技术理论 | 3篇 |
综合类 | 4583篇 |
化学工业 | 3910篇 |
金属工艺 | 878篇 |
机械仪表 | 1344篇 |
建筑科学 | 1354篇 |
矿业工程 | 476篇 |
能源动力 | 965篇 |
轻工业 | 3989篇 |
水利工程 | 669篇 |
石油天然气 | 1459篇 |
武器工业 | 331篇 |
无线电 | 2169篇 |
一般工业技术 | 4257篇 |
冶金工业 | 782篇 |
原子能技术 | 430篇 |
自动化技术 | 5255篇 |
出版年
2024年 | 172篇 |
2023年 | 585篇 |
2022年 | 815篇 |
2021年 | 945篇 |
2020年 | 957篇 |
2019年 | 951篇 |
2018年 | 927篇 |
2017年 | 979篇 |
2016年 | 992篇 |
2015年 | 977篇 |
2014年 | 1444篇 |
2013年 | 1861篇 |
2012年 | 1894篇 |
2011年 | 1998篇 |
2010年 | 1485篇 |
2009年 | 1504篇 |
2008年 | 1523篇 |
2007年 | 1756篇 |
2006年 | 1574篇 |
2005年 | 1344篇 |
2004年 | 1209篇 |
2003年 | 1081篇 |
2002年 | 893篇 |
2001年 | 724篇 |
2000年 | 702篇 |
1999年 | 709篇 |
1998年 | 569篇 |
1997年 | 490篇 |
1996年 | 471篇 |
1995年 | 463篇 |
1994年 | 370篇 |
1993年 | 300篇 |
1992年 | 260篇 |
1991年 | 221篇 |
1990年 | 182篇 |
1989年 | 144篇 |
1988年 | 115篇 |
1987年 | 61篇 |
1986年 | 50篇 |
1985年 | 42篇 |
1984年 | 32篇 |
1983年 | 20篇 |
1982年 | 24篇 |
1981年 | 19篇 |
1980年 | 10篇 |
1979年 | 16篇 |
1963年 | 3篇 |
1961年 | 4篇 |
1959年 | 6篇 |
1951年 | 5篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(6):3550-3555
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway. 相似文献
2.
Muhammad Yazid Samatra Nor Qhairul Izzreen Mohd Noor Umi Hartina Mohamad Razali Jamilah Bakar Sharifudin Md. Shaarani 《Comprehensive Reviews in Food Science and Food Safety》2022,21(4):3153-3176
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(99):41783-41794
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments. 相似文献
4.
《International Journal of Hydrogen Energy》2022,47(5):3022-3032
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications. 相似文献
5.
Yunqi Li Jing Li Yang-Gang Wang Xiran Chen Mingtao Liu Zhong Zheng Xihong Peng 《International Journal of Hydrogen Energy》2021,46(24):13273-13282
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH). 相似文献
6.
Jinming Wang Meng Yang Guodong Zou Di Liu Qiuming Peng 《Advanced functional materials》2021,31(21):2101180
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth. 相似文献
7.
Ana Clara Sabbione Santiago Suárez María Cristina Añón Adriana Scilingo 《International Journal of Food Science & Technology》2019,54(5):1506-1513
In this study, amaranth flour was used as an ingredient to prepare gluten-free cookies. The production process and attributes of amaranth cookies were characterised, and the potential use of amaranth flour as a functional ingredient was analysed. Cookies exhibited a non-uniform reddish brown colour and a cookie factor ratio of 4.5 ± 0.6. Storage studies indicated that after 3 weeks at room temperature cookies presented slight variations in the texture. Simulated gastrointestinal digestion of this product was able to release peptides capable of exerting potential antithrombotic and antihypertensive activities, IC50 values of 0.22 ± 0.04 and 0.23 ± 0.03 mg mL−1 protein, respectively. This work demonstrates for the first time that food made with amaranth flour exerts potential antithrombotic and antihypertensive activity. In conclusion, these amaranth cookies could be an alternative way of incorporating potentially health beneficial products for people who choose a conscious diet, including coeliac or vegan consumers. 相似文献
8.
9.
10.
《International Journal of Hydrogen Energy》2021,46(58):30061-30078
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion. 相似文献