首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
一般工业技术   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
针对多种定位因素存在复杂关联且不易准确提取的问题,提出了以完整双耳声信号作为输入的、基于深度学习的双耳声源定位算法。首先,分别采用深层全连接后向传播神经网络(Deep Back Propagation Neural Network,D-BPNN)和卷积神经网络(Convolutional Neural Network, CNN)实现深度学习框架;然后,分别以水平面 15°、30°和 45°空间角度间隔的双耳声信号进行模型训练;最后,采用前后混乱率、定位准确率与训练时长等指标进行算法有效性分析。模型预测结果表明,CNN模型的前后混乱率远低于 D-BPNN;D-BPNN模型的定位准确率能够达到87%以上,而 CNN模型的定位准确率能够达到 98%左右;在相同实验条件下,CNN模型的训练时长大于 D-BPNN,且随着水平面角度间隔的减小,两者训练时长之间的差异愈发显著。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号