排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
2.
基于支持向量机和遗传算法的水下目标特征选择算法 总被引:6,自引:0,他引:6
基于统计学习理论和遗传算法理论,提出了一种基于支持向量机和遗传算法相结合的水下目标特征选择算法。通过对实测数据的特征集的优化选择实验,证明了该算法的有效性和鲁棒性,它能较好地解决在复杂水下目标信号所提取的特征维数高,样本采样困难,数目偏少的实际情况下的分类识别问题。 相似文献
3.
4.
针对训练样本集中含有噪声样本、冗余样本以及无关样本,导致分类系统分类性能下降、不稳定的水声目标识别问题,提出了一种新的自适应遗传样本选择算法(Adaptive Genetic Instance Selection Algorithm, AGISA)。算法先随机生成初始种群,接着利用设计的遗传算子(跨代选择、自适应交叉和简化最近邻变异)指导种群进化,每代中对分类贡献大且选择样本数目少的个体适应度值高。提取了实测3类水声目标的多域特征,进行样本选择和分类识别仿真实验,结果表明:AGISA可以选出有效样本子集,在样本维数下降约73%的情况下,支持向量机分类器的正确分类率能提高约2.5%;并且AGISA具有较好的收敛性、稳定性,所得优化样本子集具有较好泛化能力且能明显减少分类的时间。 相似文献
5.
6.
7.
针对水下目标识别特征样本集高维小样本问题,提出了基于多核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法。该方法用多特征集典型相关分析算法对多域特征的整体相关程度进行定量分析,去除冗余和噪声特征,实现多域特征的融合,并利用多核稀疏保持投影算法,对提取的多域特征样本的稀疏重构性加以约束,增强了特征的判别能力。利用实测舰船辐射噪声数据验证基于核稀疏保持投影的多特征集典型相关分析的水下目标特征融合方法的有效性,与多特征集典型相关分析方法和核稀疏保持投影典型相关分析方法进行了对比,实验研究表明,提出的方法可以有效去除冗余和噪声特征,实现多域水下目标特征的融合,提高水下目标的识别正确率。 相似文献
8.
基于支持向量机集成的水下目标自动识别系统 总被引:1,自引:0,他引:1
针对水下目标信号复杂、样本获取难度大、样本数目偏少的问题,提出了多类支持向量机集成算法,并且以此算法为核心构建了水下目标自动识别系统.通过对4类实测水下目标的识别实验,证明了所提出的水下目标自动识别系统可以用于水下目标识别,并且具有很好的推广能力. 相似文献
9.
10.