首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   127篇
  国内免费   88篇
电工技术   39篇
综合类   55篇
化学工业   13篇
金属工艺   4篇
机械仪表   55篇
建筑科学   9篇
能源动力   2篇
轻工业   5篇
无线电   131篇
一般工业技术   61篇
冶金工业   36篇
原子能技术   4篇
自动化技术   449篇
  2024年   9篇
  2023年   35篇
  2022年   55篇
  2021年   47篇
  2020年   48篇
  2019年   46篇
  2018年   29篇
  2017年   45篇
  2016年   42篇
  2015年   38篇
  2014年   43篇
  2013年   34篇
  2012年   47篇
  2011年   44篇
  2010年   35篇
  2009年   45篇
  2008年   43篇
  2007年   35篇
  2006年   31篇
  2005年   17篇
  2004年   16篇
  2003年   8篇
  2002年   15篇
  2001年   12篇
  2000年   12篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有863条查询结果,搜索用时 15 毫秒
1.
While creativity is essential for developing students’ broad expertise in Science, Technology, Engineering, and Math (STEM) fields, many students struggle with various aspects of being creative. Digital technologies have the unique opportunity to support the creative process by (1) recognizing elements of students’ creativity, such as when creativity is lacking (modeling step), and (2) providing tailored scaffolding based on that information (intervention step). However, to date little work exists on either of these aspects. Here, we focus on the modeling step. Specifically, we explore the utility of various sensing devices, including an eye tracker, a skin conductance bracelet, and an EEG sensor, for modeling creativity during an educational activity, namely geometry proof generation. We found reliable differences in sensor features characterizing low vs. high creativity students. We then applied machine learning to build classifiers that achieved good accuracy in distinguishing these two student groups, providing evidence that sensor features are valuable for modeling creativity.  相似文献   
2.
A nonlinear method named detrended fluctuation analysis (DFA) was utilized to investigate the scaling behavior of the human electroencephalogram (EEG) in three emotional music conditions (fear, happiness, sadness) and a rest condition (eyes-closed). The results showed that the EEG exhibited scaling behavior in two regions with two scaling exponents β1 and β2 which represented the complexity of higher and lower frequency activity besides α band respectively. As the emotional intensity decreased the value of β1 increased and the value of β2 decreased. The change of β1 was weakly correlated with the 'approach-withdrawal' model of emotion and both of fear and sad music made certain differences compared with the eyes-closed rest condition. The study shows that music is a powerful elicitor of emotion and that using nonlinear method can potentially contribute to the investigation of emotion.  相似文献   
3.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.  相似文献   
4.
Abstract. In this paper we establish a statistical methodology for the spectral analysis of stationary multivariate time series via the Walsh-Fourier transform. Theoretical results pertaining to the definition and estimation of the Walsh-Fourier spectral matrix and functions of that matrix including cross-spectra, coherency and phase are given. An example of the statistical techniques developed in this paper is given; in particular, the methodologies are applied to neonatal sleep data collected from a study of the effect of maternal substance use during pregnancy.  相似文献   
5.
Signatures have long been considered to be one of the most accepted and practical means of user verification, despite being vulnerable to skilled forgers. In contrast, EEG signals have more recently been shown to be more difficult to replicate, and to provide better biometric information in response to known a stimulus. In this paper, we propose combining these two biometric traits using a multimodal Siamese Neural Network (mSNN) for improved user verification. The proposed mSNN network learns discriminative temporal and spatial features from the EEG signals using an EEG encoder and from the offline signatures using an image encoder. Features of the two encoders are fused into a common feature space for further processing. A Siamese network then employs a distance metric based on the similarity and dissimilarity of the input features to produce the verification results. The proposed model is evaluated on a dataset of 70 users, comprised of 1400 unique samples. The novel mSNN model achieves a 98.57% classification accuracy with a 99.29% True Positive Rate (TPR) and False Acceptance Rate (FAR) of 2.14%, outperforming the current state-of-the-art by 12.86% (in absolute terms). This proposed network architecture may also be applicable to the fusion of other neurological data sources to build robust biometric verification or diagnostic systems with limited data size.  相似文献   
6.
头皮脑电信号具有非平稳特性,相干等传统分析方法并不能很好地检测这些脑电时间序列间的依赖关系。广义同步中的似然同步算法对非平稳信号处理具有较好的效果,该文将它应用到实际脑电信号分析中。基于单向耦合Henon映射系统和实际脑电数据的仿真结果均表明,基于广义同步的似然同步方法适用测量非平稳信号间关系。针对健康被试静息态下,从闭眼到睁眼的过程中脑电信号间同步性的变化进行了研究,发现从闭眼到睁眼过程中,大脑的alpha波在几乎所有电极间的同步强度都显著地减弱,大脑的活动受到一定的抑制。上述结果也表明该方法在脑电数据分析中具有重要的意义,为其他的脑电研究提供一定的参考方法。  相似文献   
7.
在脑电图( EEG)信号识别中,EEG信号的采样环境、病人状态的多样性导致分类器训练所用的源域与分类器测试所用的目标域不匹配,分类器在目标域上表现不佳。为此,引入邻域适应策略,提出一种基于子空间相似度的改进主成分分析特征提取方法( SSM-PCA),在选择主成分时,考虑源域和目标域数据的几何和统计特性,并结合迁移学习分类器大间隔投射迁移支持向量机( LMPROJ),给出以SSM-PCA为基础的LMPROJ分类识别方法。实验结果表明,与结合PCA特征抽取技术和K近邻分类器实现的识别方法相比,该方法在识别正确率方面得到较大提升。  相似文献   
8.
VALENCE is an interactive visualisation controlled by live brainwave monitoring. We used a wireless EEG headset to monitor the player's alpha waves (an indicator of relaxation) and valence (an indicator of emotion or arousal). The game world is an emergent system of attractive and repulsive forces responding to EEG input.  相似文献   
9.
基于能量特征的脑电信号特征提取与分类   总被引:1,自引:0,他引:1  
为了快速、有效地提取脑电特征,提高分类正确率,采用带通滤波和小波包分析的方法提取Mu、Beta节律对应的脑电信号,在时域范围内,将信号幅度的平方作为能量特征值;在频域范围内,采用AR模型功率谱估计法所得的功率谱密度作为能量特征值.根据运动想象脑电信号特点,构造左右通道信号能量差值的符号特性作为分类判别依据,进行分类测试,方法简单.初步实验结果表明,所利用的两种方法的分类正确率达87.857%.  相似文献   
10.
In order to characterize the non-Gaussian information contained within the EEG signals, a new feature extraction method based on bispectrum is proposed and applied to the classification of right and left motor imagery for developing EEG-based brain-computer interface systems. The experimental results on the Graz BCI data set have shown that based on the proposed features, a LDA classifier, SVM classifier and NN classifier outperform the winner of the BCI 2003 competition on the same data set in terms of either the mutual information, the competition criterion, or misclassification rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号