首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   1篇
综合类   1篇
冶金工业   1篇
自动化技术   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
序贯三支决策方法是一种能够表示问题中的多重层次粒度,并将多粒度结合起来解决不确定决策问题的有效途径。优势-等价关系粗糙集则是针对条件属性具有偏好关系的分类问题,提取有序信息,对目标概念进行近似,从而形成决策知识。利用传统的优势关系粗糙集方法进行知识约简和提取的效率低下,而目前大部分序贯三支决策方法则局限在符号值属性的信息系统中,对连续值和有序值不能进行有效处理,造成一定程度的信息丢失。因此,将序贯三支决策的思想应用于优势关系粗糙集模型中,定义了一种新的基于序贯三支决策的属性约简及相应的属性重要度,对具有偏好值属性的信息系统进行更加高效的处理,通过多粒度的表示和关系的研究,加速了知识约简过程。选取了多组UCI数据进行实验,结果表明所提出的基于优势关系的序贯三支决策方法能够在保证约简质量的基础上明显降低时间耗费。  相似文献   
2.
基于划分子集的属性约简算法   总被引:1,自引:1,他引:0  
Pawlak提出的基于属性重要度的约简算法是常用的算法之一,它通过计算等价关系对论域划分的粒度来度量属性的重要度。但用该算法计算每一个属性的重要度时,都要计算不同等价关系对整个论域的划分,计算复杂度非常高。受决策树划分子集思想的启发,对基于属性重要度的属性约简算法进行了改进,提出了一种基于划分子集的属性约简算法。在核属性集形成划分的基础上,通过在核属性中添加非核属性从而形成更细的划分,如此反复。在保持正域不变的框架下,形成最细化分的属性集就是一个约简。理论分析显示该算法减少了求属性约简的计算时间复杂度,提高了求属性约简的效率。  相似文献   
3.
近几年,联合聚类划分和表示学习的深度聚类方法提供了出色的聚类性能,但随着图像质量的下降(比如噪声图像),聚类结果还不能令人满意.为此,提出一种新的深度聚类算法(DDC).深度卷积降噪自编码器学习噪声数据的特征表示;自注意力机制提高网络捕获局部关键信息的能力;端到端的联合训练得到合适的特征表示并完成聚类分配;对数据点和类中心的相似度赋予不同的权重,扩大同类和异类之间的差异.在公开图像数据集上的实验表明DDC算法的聚类性能更高;并与其他深度聚类算法进行对比,例如在COIL-20上DDC的聚类精度是0.803,而DEC算法仅是0.597.总之,结合自注意力和深度卷积降噪自编码器的DDC算法能对噪声图像进行更有效的聚类分析,扩大了图像聚类的应用范围.  相似文献   
4.
杨梦茵    陈俊芬    翟俊海   《智能系统学报》2022,17(5):900-907
基于深度神经网络的非监督学习方法通过联合优化特征表示和聚类指派,大大提升了聚类任务的性能。但大量的参数降低了运行速度,另外,深度模型提取的特征的区分能力也影响聚类性能。为此,提出一种新的聚类算法(asymmetric fully-connected layers convolutional auto-encoder, AFCAE),其中卷积编码器结合非对称全连接进行无监督的特征提取,然后K-means算法对所得特征执行聚类。网络采用3×3和2×2的小卷积核,大大减少了参数个数,降低了算法复杂性。在MNIST上AFCAE获得0.960的聚类精度,比联合训练的DEC(deep embedding clustering)方法(0.840)提高了12个百分点。在6个图像数据集上实验结果表明AFCAE网络有优异的特征表示能力,能出色完成下游的聚类任务。  相似文献   
5.
光谱法测定生铁中硅锰磷硫   总被引:3,自引:0,他引:3  
用光谱法同时测定生铁中硅、锰、磷、硫,方法简便快捷,具有良好的精密度和准确度,相对标准偏差不大于3%。  相似文献   
6.
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。  相似文献   
7.
陈俊芬  张明  何强 《计算机科学》2018,45(Z11):474-479
基于图论理论的NJW谱聚类算法的核心思想是将数据点映射到特征空间后再利用K-means算法进行聚类,从而得到原始数据的聚类结果。NJW算法是K-means算法的推广,并且在任意形状的数据上都具有较好的聚类效果,从而有着广泛的应用。但是,类数C和高斯核函数中的尺度参数σ较大程度地影响着NJW的聚类性能;另外,K-means对随机初始值的敏感性也影响着NJW的聚类结果。为此,一种基于启发式确定类数的谱聚类算法(记为DP-NJW)被提出。该算法先根据数据的密度分布确定类中心点和类数,这些类中心点作为特征空间中K-means聚类的初始类中心,然后用NJW进行聚类。文中通过实验将DP-NJW算法和经典聚类算法在7个公共数据集上进行测试和对比,其中DP-NJW算法在5个数据集上的聚类精度高于NJW的平均聚类精度,在另2个数据集上二者持平。对比DPC算法,所提算法在5个数据集上也有不俗的聚类精度,而且DP-NJW的计算消耗较小,在较大的数据集aggregation上表现更为突出。实验结果表明,文中所提的DP-NJW算法更具优势。  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号