The proliferating need for sustainability intervention in food grain transportation planning is anchoring the attention of researchers in the interests of stakeholders and environment at large. Uncertainty associated with food grain supply further intensifies the problem steering the need for designing robust, cost-efficient and sustainable models. In line with this, this paper aims to develop a robust and sustainable intermodal transportation model to facilitate single type of food grain commodity shipments while considering procurement uncertainty, greenhouse gas emissions, and intentional hub disruption. The problem is designed as a mixed integer non-linear robust optimisation model on a hub and spoke network for evaluating near optimal shipment quantity, route selection and hub location decisions. The robust optimisation approach considers minimisation of total relative regret associated with total cost subject to several real-time constraints. A version of Particle Swarm Optimisation with Differential Evolution is proposed to tackle the resulting NP-hard problem. The model is tested with two other state-of the art meta-heuristics for small, medium, and large datasets subject to different procurement scenarios inspired from real time food grain operations in Indian context. Finally, the solution is evaluated with respect to total cost, model and solution robustness for all instances. 相似文献
Shale gas, as an important unconventional resource, has drawn global attention. It is mainly composed of adsorption gas and free gas. Adsorption gas content could play an important guiding role on both the selection of favorable perspective area and the exploration and exploitation of shale gas resources. In order to accurately measure adsorption gas content, a new approach was established to predict the adsorption isotherm of methane on shale. Based on the simplified local-density (SLD) method, both the adsorption isotherms of illite, illite/smectite mixed-layer, cholorite and type III kerogen and the total shale rock could be well fitted. The fitting results show good coincidences with the true experimental test data, which proves the method is reasonable and dependable and the prediction results are effective and credible. In addition, the good simulation results show that the SLD parameters can reflect the pore structure characteristics and corresponding adsorption characteristics of the shale samples, which can be used for the quantitative characterization of shale pore system. 相似文献
The results of a system analysis of the efficiency of nitrous oxide(N_2O) as a propellant component for small space vehicles(SSV) were presented. A criterion for mass efficiency of the SSV propulsion system(PS) is determined. The current global state-of-the-art of SSV PSs is shown. The application field of nitrous oxide in SSV PSs is calculated and mass efficiency of N_2O application is quantitatively determined. An overview of physical and chemical as well as operational properties of nitrous oxide as a promising, non-toxic component of rocket propellant is provided. Main physical and chemical constants of gaseous and liquid nitrous oxide; chemical properties of N_2O, thermal stability of N_2O, catalytic decomposition of N_2O, a mechanism of decomposition of N_2O, catalysts for decomposition of N_2O, ballast additives to N_2O, application of nitrous oxide, nitrous oxide as a rocket propellant, production of nitrous oxide, toxicity of nitrous oxide, fire hazard of N_2O, requirements to equipment when handling N_2O; storage and transportation of N_2O are considered. It is demonstrated that nitrous oxide is a chemical compound meeting the requirements to rocket propellants, including those related to the environmental friendliness of propellants. With 75 references. 相似文献
We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposition method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form. 相似文献
ABSTRACTIn recent times, the applications of multimedia are rising in a greedy mode and hence the amount of video transactions is also increasing exponentially. This has shouted great demands on effective models on video encoding and also for reducing the transmission channel congestion. This research work introduces a managing technique termed weighted encoding for High-Efficiency Video Coding (HEVC). HEVC, also termed as MPEG-H Part 2 and H.265 is a video compression standard that is widely utilized AVC (H.264 or MPEG-4 Part 10). When compared to AVC, HEVC grants double the ratio of data compression at a similar level of quality of the video or considerably enhanced video quality at a similar bit rate. This work intends to optimize the weight that adopted in HEVC for encoding. For this, this paper proposes a new Iterative based propagation update in the water wave Optimization Algorithm (IPU-WWO), which is the improved form of Water wave Optimization (WWO). The performance of proposed IPU-WWO is compared over other conventional methods like Artificial Bee Colony (ABC), Firefly (FF), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) with respect to Peak Signal to Noise Ratio (PSNR). By doing the encoding process, it minimizes the video size with perceptually better quality video or PSNR. 相似文献
In this paper, we study scheduling games under mixed coordination mechanisms on hierarchical machines. The two scheduling policies involved are ‐ and ‐, where ‐ (resp., ‐) policy sequences jobs in nondecreasing order of their hierarchies, and jobs of the same hierarchy in nonincreasing (resp., nondecreasing) order of their processing times. We first show the existence of a Nash equilibrium. Then we present the price of anarchy and the price of stability for the games with social costs of minimizing the makespan and maximizing the minimum machine load. All the bounds given in this paper are tight. 相似文献
ABSTRACTThis paper proposes the multiple-hypotheses image segmentation and feed-forward neural network classifier for food recognition to improve the performance. Initially, the food or meal image is given as input. Then, the segmentation is applied to identify the regions, where a particular food item is located using salient region detection, multi-scale segmentation, and fast rejection. Then, the features of every food item are extracted by the global feature and local feature extraction. After the features are obtained, the classification is performed for each segmented region using a feed-forward neural network model. Finally, the calorie value is computed with the aid of (i) food volume and (ii) calorie and nutrition measure based on mass value. The experimental results and performance evaluation are validated. The outcome of the proposed method attains 0.947 for Macro Average Accuracy (MAA) and 0.959 for Standard Accuracy (SA), which provides better classification performance. 相似文献
Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment. 相似文献