排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
本文设计了一种基于熵的遗传聚类分割算法。该方法以像素的灰度值为特征向量进行编码,利用直方图熵法准则函数作为适应度函数,采用基于排名的选择操作,以一定的概率进行算术交叉和变异,并结合聚类分析设定种群的聚类中心对细胞图像进行遗传聚类分割,获得了较好的分割效果。 相似文献
3.
呼吸是人的基本生命活动,监测呼吸可以得知呼吸道和胸廓运动的生理、病理学状态,对某些呼吸系统疾病的诊断有重要的参考价值;提出了一种非接触式呼吸监测方法:对红外视频流中的每帧胸腹部区域数据进行降维,计算所有胸腹部区域数据的方差,将一定时间段内的方差序列进行低通滤波;最后根据方差序列可以获得该段时间内的呼吸频率和呼吸暂停时间;提出的非接触式呼吸检测算法在不影响被监测者正常睡眠活动的情况下,可以准确获取呼吸频率与其他相关参数,为健康监测和相关疾病的诊断提供了数据支持;日常家居场景的实验中,检测到的呼吸次数与实际完全一致,并且与实际胸腹部起伏变化基本同步,较好的保证了结果的准确性。 相似文献
4.
目的 视线追踪是人机交互的辅助系统,针对传统的虹膜定位方法误判率高且耗时较长的问题,本文提出了一种基于人眼几何特征的视线追踪方法,以提高在2维环境下视线追踪的准确率。方法 首先通过人脸定位算法定位人脸位置,使用人脸特征点检测的特征点定位眼角点位置,通过眼角点计算出人眼的位置。直接使用虹膜中心定位算法的耗时较长,为了使虹膜中心定位的速度加快,先利用虹膜图片建立虹膜模板,然后利用虹膜模板检测出虹膜区域的位置,通过虹膜中心精定位算法定位虹膜中心的位置,最后提取出眼角点、虹膜中心点等信息,对点中包含的角度信息、距离信息进行提取,组合成眼动向量特征。使用神经网络模型进行分类,建立注视点映射关系,实现视线的追踪。通过图像的预处理对图像进行增强,之后提取到了相对的虹膜中心。提取到需要的特征点,建立相对稳定的几何特征代表眼动特征。结果 在普通的实验光照环境中,头部姿态固定的情况下,识别率最高达到98.9%,平均识别率达到95.74%。而当头部姿态在限制区域内发生变化时,仍能保持较高的识别率,平均识别率达到了90%以上。通过实验分析发现,在头部变化的限制区域内,本文方法具有良好的鲁棒性。结论 本文提出使用模板匹配与虹膜精定位相结合的方法来快速定位虹膜中心,利用神经网络来对视线落点进行映射,计算视线落点区域,实验证明本文方法具有较高的精度。 相似文献
5.
6.
针对骨髓细胞图像的特点,采用数学形态学的方法对图像进行了处理,获得了不同类型细胞核的准确的边缘。对于获得的边缘图像,采用两级神经网络,利用基于神经网络的PCA算法获得图像的3个主分量,然后采用模拟退火算法和BP算法进行细胞的分类识别,获得了较好的识别效果。 相似文献
7.
权重融合深度图像与骨骼关键帧的行为识别 总被引:1,自引:0,他引:1
针对2D信息量不足导致人体行为识别率不高的问题,提出融合多种深度信息的行为识别方法.首先利用深度图像捕捉行为线索,提取梯度及相关方向特征;然后利用互信息提取骨骼图的关键帧,提出基于关键帧的静态姿态模型、当前运动模型和动态偏移模型表征人体行为底层特征;最后通过权重投票机制为不同种类特征分配权重,实现多类特征下的多权重融合.在MSR_Action3D深度数据集上的实验结果表明,该方法的识别率比其他方法提高1.5%. 相似文献
8.
基于深度序列的人体行为识别, 一般通过提取特征图来提高识别精度, 但这类特征图通常存在时序信息缺失的问题. 针对上述问题, 本文提出了一种新的深度图序列表示方式, 即深度时空图(Depth space time maps, DSTM). DSTM降低了特征图的冗余度, 弥补了时序信息缺失的问题. 本文通过融合空间信息占优的深度运动图(Depth motion maps, DMM) 与时序信息占优的DSTM, 进行高精度的人体行为研究, 并提出了多聚点子空间学习(Multi-center subspace learning, MCSL)的多模态数据融合算法. 该算法为各类数据构建多个投影聚点, 以此增大样本的类间距离, 降低了投影目标区域维度. 本文在MSR-Action3D数据集和UTD-MHAD数据集上进行人体行为识别. 最后实验结果表明, 本文方法相较于现有人体行为识别方法有着较高的识别率. 相似文献
9.
针对周期性纺织品存在的拉伸变形问题,提出结合模板校正与低秩分解的纺织品瑕疵检测方法.首先对原图像进行模板校正,减少图像拉伸变形对检测结果的影响.然后提出低秩校正分解模型,包含低秩项、稀疏项和校正项,通过交替方向法优化求解,生成低秩矩阵和稀疏矩阵.最后利用最优阈值分割算法,分割由稀疏矩阵产生的显著图,完成瑕疵检测.在标准数据库上的实验表明,文中方法的查全率有所提高. 相似文献
10.