首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   221篇
  国内免费   183篇
电工技术   111篇
综合类   37篇
化学工业   8篇
金属工艺   10篇
机械仪表   19篇
建筑科学   7篇
矿业工程   4篇
能源动力   27篇
轻工业   2篇
水利工程   23篇
石油天然气   5篇
武器工业   3篇
无线电   64篇
一般工业技术   28篇
冶金工业   1篇
自动化技术   434篇
  2024年   31篇
  2023年   87篇
  2022年   170篇
  2021年   170篇
  2020年   152篇
  2019年   104篇
  2018年   46篇
  2017年   12篇
  2016年   3篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  1990年   1篇
排序方式: 共有783条查询结果,搜索用时 265 毫秒
1.
摘 要:核心网业务模型的建立是5G网络容量规划和网络建设的基础,通过现有方法得到的理论业务模型是静态不可变的且与实际网络存在偏离。为了克服现有5G核心网业务模型与现网模型适配性较差以及规划设备无法满足用户实际业务需求的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与卷积LSTM (convolution LSTM,ConvLSTM)网络双通道融合的 5G 核心网业务模型预测方法。该方法基于人工智能(artificial intelligence,AI)技术以实现高质量的核心网业务模型的智能预测,形成数据反馈闭环,实现网络自优化调整,助力网络智能化建设。  相似文献   
2.
基于湘江流域1999—2013年实测水文气象数据,采用LSTM模型和其变体模型研究多个预见期下不同输入变量和不同模型结构对径流预测结果的影响,评估LSTM模型及其变体模型在短期径流预测中的性能,基于排列重要性法和积分梯度法探究了LSTM模型对流域径流预测的可解释性。结果表明:在历史径流输入数据的基础上增加有效的水文气象变量输入,可以明显改善模型的预测效果,输入变量的改变比模型结构的差异对预测结果的影响更大;随着预见期的增大,降水数据的加入对预测效果表现出不同程度的提升,预见期为1 d时,预测结果的纳什效率系数(NSE)提升2.0%,预见期为2~4 d时,NSE提升可达13.6%;降水和历史径流在预测中起着重要的作用,而前期湿润条件与降水事件的共同作用是湘江流域洪水的主要诱发因素;LSTM模型可反映两种不同的输入输出关系,这两种关系对应于近期降雨和历史降雨两种洪水诱发机制。  相似文献   
3.
为了更好地表示文本语义信息,提高文本分类准确率,改进了特征权重计算方法,并融合特征向量与语义向量进行文本表示.首先基于文本复杂网络实现文本特征提取,接着利用网络节点统计特征改进TF-IDF得到特征向量,再基于LSTM抽取语义向量,最后将特征向量与语义向量相融合,使新的文本表示向量信息区分度更高.以网络新闻数据为实验对象的实验结果表明,改进特征权重计算方法,在特征向量中引入了语义和结构信息,并融合特征向量和语义向量,能进一步丰富文本信息,改善文本分类效果.  相似文献   
4.
电力大用户最大需量控制是降低电网峰值负荷、节约用户电费成本的重要技术手段.面向强波动性和冲击性工业电能需量控制,研究了超短期需量负荷的多步预测问题.基于集成经验模态分解(EE-MD)方法,通过二次分解有效分离时间序列中不同频率的信号,采用长短期记忆网络(LSTM)对各信号子序列进行独立预测,最后组合预测结果.实验结果表明,本方法能很好的预测工业需量负荷变化,M A PE/MAE/NRMSE精度指标基本控制在2% 以内,明显优于多种现行主流时序预测模型和最新文献方法,且消除了多步预测的传递误差,预测模型精度和稳定性满足需量控制要求.  相似文献   
5.
图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型.对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究,提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型.该模型采用编码器-解码器结构,在特征提取网络Inception-v4中加入CBAM,并作为编码器提取图片的重要特征信息,将其送入解码器长短期记忆网络(LSTM)中,生成对应图片的描述语句.采用MSCOCO2014数据集中训练集和验证集进行训练和测试,使用多个评价准则评估模型的准确性.实验结果表明,改进后模型的评价准则得分优于其他模型,其中Model2实验能够更好地提取到图像特征,生成更加准确的描述.  相似文献   
6.
Signatures have long been considered to be one of the most accepted and practical means of user verification, despite being vulnerable to skilled forgers. In contrast, EEG signals have more recently been shown to be more difficult to replicate, and to provide better biometric information in response to known a stimulus. In this paper, we propose combining these two biometric traits using a multimodal Siamese Neural Network (mSNN) for improved user verification. The proposed mSNN network learns discriminative temporal and spatial features from the EEG signals using an EEG encoder and from the offline signatures using an image encoder. Features of the two encoders are fused into a common feature space for further processing. A Siamese network then employs a distance metric based on the similarity and dissimilarity of the input features to produce the verification results. The proposed model is evaluated on a dataset of 70 users, comprised of 1400 unique samples. The novel mSNN model achieves a 98.57% classification accuracy with a 99.29% True Positive Rate (TPR) and False Acceptance Rate (FAR) of 2.14%, outperforming the current state-of-the-art by 12.86% (in absolute terms). This proposed network architecture may also be applicable to the fusion of other neurological data sources to build robust biometric verification or diagnostic systems with limited data size.  相似文献   
7.
在文本信息数量迅速增长的环境下,为提升阅读效率,提出一种基于深度学习的多文档自动文本摘要模型。在传统文摘模型的基础上将Siamese LSTM深度学习网络应用到文本相似度计算中,计算曼哈顿距离来表征文本相似度,并采用去除停用词的方法改进该网络模型以提升计算效率。实验结果表明,使用Siamese LSTM与传统余弦相似度等方法相比,生成的文摘在语义方面更贴近主题,质量更高,整个文摘系统的工作效率也显著提升。  相似文献   
8.
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐状态下的信息输入到解码器中,实现高精度多步交通流量的预测。基于真实交通数据进行实验测试和分析,实验结果表明,相较于原始的基于图卷积的模型,所提模型在北京和纽约两个交通流量公开数据集上的均方根误差(RMSE)分别获得了1.622和0.08的下降。所提模型能够高效且精确地对交通流量作出预测。  相似文献   
9.
李康康  张静 《计算机应用》2021,41(9):2504-2509
图像描述任务是图像理解的一个重要分支,它不仅要求能够正确识别图像的内容,还要求能够生成在语法和语义上正确的句子。传统的基于编码器-解码器的模型不能充分利用图像特征并且解码方式单一。针对这些问题,提出一种基于注意力机制的多层次编码和解码的图像描述模型。首先使用Faster R-CNN(Faster Region-based Convolutional Neural Network)提取图像特征,然后采用Transformer提取图像的3种高层次特征,并利用金字塔型的融合方式对特征进行有效融合,最后构建3个长短期记忆(LSTM)网络对不同层次特征进行层次化解码。在解码部分,利用软注意力机制使得模型能够关注当前步骤所需要的重要信息。在MSCOCO大型数据集上进行实验,利用多种指标(BLEU、METEOR、ROUGE-L、CIDEr)对模型进行评价,该模型在指标BLEU-4、METEOR和CIDEr上相较于Recall(Recall what you see)模型分别提升了2.5个百分点、2.6个百分点和8.8个百分点;相较于HAF(Hierarchical Attention-based Fusion)模型分别提升了1.2个百分点、0.5个百分点和3.5个百分点。此外,通过可视化生成的描述语句可以看出,所提出模型所生成的描述语句能够准确反映图像内容。  相似文献   
10.
丁尹  桑楠  李晓瑜  吴飞舟 《计算机应用》2021,41(8):2373-2378
在电信运维的容量预测过程中,存在容量指标和部署业务种类繁多的问题。现有研究未考虑指标数据类型的差异,对所有类型的数据使用同种预测方法,使得预测效果参差不齐。为了提升指标预测效率,提出一种指标数据类型分类方法,利用该方法将数据类型分为趋势型、周期型和不规则型。针对其中的周期型数据预测,提出基于双向循环神经网络(BiRNN)的周期型容量指标预测模型,记作BiRNN-BiLSTM-BI。首先,为分析容量数据的周期特征,提出一种忙闲分布分析算法;其次,搭建循环神经网络(RNN)模型,该模型包含一层BiRNN和一层双向长短时记忆网络(BiLSTM);最后,充分利用系统忙闲分布信息,对BiRNN输出的结果进行优化。与传统的三次指数平滑、差分自回归移动平均(ARIMA)模型和反向传播(BP)神经网络模型进行比较的实验结果表明,在统一日志数据集和分布式缓存数据集上,提出的BiRNN-BiLSTM-BI模型的均方误差(MSE)分别比对比模型中表现最优的模型降低了15.16%和45.67%,可见预测准确率得到了很大程度的提升。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号