全文获取类型
收费全文 | 307224篇 |
免费 | 35052篇 |
国内免费 | 23157篇 |
专业分类
电工技术 | 25746篇 |
技术理论 | 15篇 |
综合类 | 35038篇 |
化学工业 | 28676篇 |
金属工艺 | 11610篇 |
机械仪表 | 25298篇 |
建筑科学 | 32577篇 |
矿业工程 | 11100篇 |
能源动力 | 13573篇 |
轻工业 | 18772篇 |
水利工程 | 15493篇 |
石油天然气 | 15423篇 |
武器工业 | 3910篇 |
无线电 | 21124篇 |
一般工业技术 | 28421篇 |
冶金工业 | 11717篇 |
原子能技术 | 3802篇 |
自动化技术 | 63138篇 |
出版年
2024年 | 1452篇 |
2023年 | 4196篇 |
2022年 | 8338篇 |
2021年 | 9638篇 |
2020年 | 10314篇 |
2019年 | 8714篇 |
2018年 | 8505篇 |
2017年 | 10423篇 |
2016年 | 12317篇 |
2015年 | 12913篇 |
2014年 | 19332篇 |
2013年 | 19853篇 |
2012年 | 22726篇 |
2011年 | 24733篇 |
2010年 | 18565篇 |
2009年 | 19053篇 |
2008年 | 18449篇 |
2007年 | 21592篇 |
2006年 | 18793篇 |
2005年 | 16141篇 |
2004年 | 13381篇 |
2003年 | 11559篇 |
2002年 | 9245篇 |
2001年 | 7628篇 |
2000年 | 6588篇 |
1999年 | 5230篇 |
1998年 | 4420篇 |
1997年 | 3685篇 |
1996年 | 3193篇 |
1995年 | 2696篇 |
1994年 | 2328篇 |
1993年 | 1694篇 |
1992年 | 1492篇 |
1991年 | 1131篇 |
1990年 | 933篇 |
1989年 | 780篇 |
1988年 | 601篇 |
1987年 | 406篇 |
1986年 | 331篇 |
1985年 | 309篇 |
1984年 | 350篇 |
1983年 | 281篇 |
1982年 | 258篇 |
1981年 | 127篇 |
1980年 | 140篇 |
1979年 | 110篇 |
1978年 | 68篇 |
1977年 | 52篇 |
1976年 | 47篇 |
1959年 | 46篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(45):19718-19731
Metals and alloys forming reversible hydrides with hydrogen gas are potential building blocks for compact, solid state hydrogen storage systems. Based on the materials’ thermodynamic characteristics, their use as temperature-swing gas compression and delivery systems in the hydrogen economy is also possible. Given the wide variety of materials developed and tested at laboratory and pilot scales, a harmonized method of selecting the feasible material(s) for a particular real-life application is required. This study proposes a system selection framework based on a normalized, multi-criteria metric. Using calculated values of multi-criteria metric, multi-criteria screening and ranking of potential materials has been demonstrated for a particular use case. It is found that the alloy TiMn1.52 having value of additive metric between 0.25 and 0.35 represents the best material for a single stage system. The alloy pair CaNi5–Ti1.5CrMn represents the best alternative for a two-stage system with additive metric values between 0.63 and 0.82. Energy and economic characteristics of the metal hydride gas compression and delivery systems are evaluated and compared with an equivalent mechanical compression system producing the same final effect (i.e., delivery of a given quantity of gas at a defined pressure). 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(100):42280-42292
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux. 相似文献
3.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested. 相似文献
4.
《International Journal of Hydrogen Energy》2022,47(2):1217-1228
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load. 相似文献
5.
《International Journal of Hydrogen Energy》2022,47(75):32031-32038
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities. 相似文献
6.
《International Journal of Hydrogen Energy》2022,47(91):38721-38735
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface. 相似文献
7.
Vijay Singh Sharanagat Prabhat K. Nema Lochan Singh Ankur Kumar 《International Journal of Food Science & Technology》2022,57(3):1654-1665
The effect of microwave roasting parameters (300, 450 and 600 W; 5, 10 and 15 min) on acrylamide content in sorghum grain was determined using High Pressure Liquid Chromatography (HPLC)-photo diode array (PDA) detector coupled with C-18 column. Samples roasted at 300 and 450 W did not possess acrylamide, whereas 600 W (15 min) favoured formation of 2740.19 µg/kg of acrylamide, levels far exceeding the defined European Union (EU) limits. The chronic daily intake (CDI) for acrylamide through consumption of such grain flour was 3.25–9.5-fold higher to Joint FAO/WHO Expert Committee on Food Additives (JECFA) defined high exposure limits. The margin of exposure (MOE) values ranged from 4.3 to 12.76 and from 11.07 to 32.27 for neoplastic and neurological effects, respectively, demonstrating high exposure and serious health concerns associated with dietary intake of this toxicant. This study assesses the risk for the Indian population and highlights the importance of optimising process parameters for food product to minimise such exposure risks. 相似文献
8.
Ligang Yu Yong Li Yukun Yang Caixia Guo Meiping Li 《International Journal of Food Science & Technology》2022,57(7):4646-4655
This study investigated the inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products (fAGEs) formation in a bovine serum albumin (BSA)–fructose model. Model systems of BSA and fructose were prepared, and curcumin or piperine was added. fAGEs and BSA oxidation product (dityrosine, kynurenine and N'-formylkynurenine) contents were determined. The results showed that fAGEs content decreased with increasing concentration of curcumin and piperine (P < 0.05). Addition of curcumin and piperine at 160 µg mL−1 could inhibit fluorescent AGEs by 100% and 93% respectively. Dityrosine and N'-formylkynurenine contents decreased as curcumin and piperine concentration increased (P < 0.05). Furthermore, the result of principal component analysis indicated that curcumin and piperine markedly impeded BSA oxidation, resulting in a lower level of fAGEs in model systems. Therefore, adding curcumin and piperine may facilitate reduced fAGEs levels in BSA–fructose model. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(5):3429-3436
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future. 相似文献
10.
《International Journal of Hydrogen Energy》2022,47(3):2040-2049
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk. 相似文献