首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106286篇
  免费   15311篇
  国内免费   9841篇
电工技术   15547篇
技术理论   9篇
综合类   12428篇
化学工业   3444篇
金属工艺   1914篇
机械仪表   5441篇
建筑科学   4224篇
矿业工程   2583篇
能源动力   2070篇
轻工业   1358篇
水利工程   2075篇
石油天然气   1779篇
武器工业   1615篇
无线电   27584篇
一般工业技术   4179篇
冶金工业   1626篇
原子能技术   264篇
自动化技术   43298篇
  2024年   915篇
  2023年   2301篇
  2022年   4325篇
  2021年   4709篇
  2020年   4748篇
  2019年   3502篇
  2018年   2958篇
  2017年   3473篇
  2016年   3656篇
  2015年   4239篇
  2014年   7162篇
  2013年   6252篇
  2012年   8240篇
  2011年   8504篇
  2010年   6570篇
  2009年   6902篇
  2008年   7046篇
  2007年   7981篇
  2006年   6684篇
  2005年   5955篇
  2004年   4894篇
  2003年   4369篇
  2002年   3364篇
  2001年   2901篇
  2000年   2324篇
  1999年   1868篇
  1998年   1362篇
  1997年   1056篇
  1996年   871篇
  1995年   639篇
  1994年   509篇
  1993年   321篇
  1992年   208篇
  1991年   141篇
  1990年   107篇
  1989年   104篇
  1988年   61篇
  1987年   30篇
  1986年   32篇
  1985年   34篇
  1984年   19篇
  1983年   23篇
  1982年   30篇
  1981年   7篇
  1980年   3篇
  1979年   8篇
  1961年   4篇
  1960年   4篇
  1959年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In actual engineering scenarios, limited fault data leads to insufficient model training and over-fitting, which negatively affects the diagnostic performance of intelligent diagnostic models. To solve the problem, this paper proposes a variational information constrained generative adversarial network (VICGAN) for effective machine fault diagnosis. Firstly, by incorporating the encoder into the discriminator to map the deep features, an improved generative adversarial network with stronger data synthesis capability is established. Secondly, to promote the stable training of the model and guarantee better convergence, a variational information constraint technique is utilized, which constrains the input signals and deep features of the discriminator using the information bottleneck method. In addition, a representation matching module is added to impose restrictions on the generator, avoiding the mode collapse problem and boosting the sample diversity. Two rolling bearing datasets are utilized to verify the effectiveness and stability of the presented network, which demonstrates that the presented network has an admirable ability in processing fault diagnosis with few samples, and performs better than state-of-the-art approaches.  相似文献   
2.
瞿中  谢钇 《计算机科学》2021,48(4):187-191
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性。  相似文献   
3.
In this paper, we strive to propose a self-interpretable framework, termed PrimitiveTree, that incorporates deep visual primitives condensed from deep features with a conventional decision tree, bridging the gap between deep features extracted from deep neural networks (DNNs) and trees’ transparent decision-making processes. Specifically, we utilize a codebook, which embeds the continuous deep features into a finite discrete space (deep visual primitives) to distill the most common semantic information. The decision tree adopts the spatial location information and the mapped primitives to present the decision-making process of the deep features in a tree hierarchy. Moreover, the trained interpretable PrimitiveTree can inversely explain the constituents of the deep features, highlighting the most critical and semantic-rich image patches attributing to the final predictions of the given DNN. Extensive experiments and visualization results validate the effectiveness and interpretability of our method.  相似文献   
4.
To save bandwidth and storage space as well as speed up data transmission, people usually perform lossy compression on images. Although the JPEG standard is a simple and effective compression method, it usually introduces various visually unpleasing artifacts, especially the notorious blocking artifacts. In recent years, deep convolutional neural networks (CNNs) have seen remarkable development in compression artifacts reduction. Despite the excellent performance, most deep CNNs suffer from heavy computation due to very deep and wide architectures. In this paper, we propose an enhanced wide-activated residual network (EWARN) for efficient and accurate image deblocking. Specifically, we propose an enhanced wide-activated residual block (EWARB) as basic construction module. Our EWARB gives rise to larger activation width, better use of interdependencies among channels, and more informative and discriminative non-linearity activation features without more parameters than residual block (RB) and wide-activated residual block (WARB). Furthermore, we introduce an overlapping patches extraction and combination (OPEC) strategy into our network in a full convolution way, leading to large receptive field, enforced compatibility among adjacent blocks, and efficient deblocking. Extensive experiments demonstrate that our EWARN outperforms several state-of-the-art methods quantitatively and qualitatively with relatively small model size and less running time, achieving a good trade-off between performance and complexity.  相似文献   
5.
新型建筑工业化具有高质量、低消耗、可循环发展等特征,其推广已上升到国家战略层面。利用演化博弈方法,建立“政府-开发商-银行” 的三方动态演化博弈模型,进行各博弈主体策略的演化稳定性分析,并针对初始状态、奖惩力度、借贷风险和开发成本等对演化结果的影响进行动态仿真。在此基础上, 考虑开发商群体的网络拓扑特征对演化真实性的影响,引入复杂网络理论, 以无标度网络为载体描述开发商个体的连接偏好和决策机制,构建政府监管下的建筑工业化扩散模型,并通过仿真深入研究相关因素对扩散深度的影响作用,最后结合仿真结果给出相应对策建议。  相似文献   
6.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   
7.
With the emergence of large-scale knowledge base, how to use triple information to generate natural questions is a key technology in question answering systems. The traditional way of generating questions require a lot of manual intervention and produce lots of noise. To solve these problems, we propose a joint model based on semi-automated model and End-to-End neural network to automatically generate questions. The semi-automated model can generate question templates and real questions combining the knowledge base and center graph. The End-to-End neural network directly sends the knowledge base and real questions to BiLSTM network. Meanwhile, the attention mechanism is utilized in the decoding layer, which makes the triples and generated questions more relevant. Finally, the experimental results on SimpleQuestions demonstrate the effectiveness of the proposed approach.  相似文献   
8.
基于神经网络和遗传算法的锭子弹性管性能优化   总被引:1,自引:0,他引:1  
为得到减振弹性管对下锭胆的支承弹性和锭子高速运动下的稳定性等性能的最优匹配效率,依据减振弹性管的等效抗弯刚度及底部等效刚度系数公式,利用MatLab数值分析软件构建弹性管抗弯刚度和底部挠度数学模型。首先,结合Isight优化软件基于径向基神经网络构建其近似模型,且使精度达到可接受水平,并以模型的关键结构参数弹性模量、螺距、槽宽、壁厚为设计变量,结合遗传算法对弹性管抗弯刚度和底部挠度进行多目标优化设计,得到Pareto最优解集和Pareto前沿图,确定出减振弹性管结构工艺参数的优化方案。通过对优化数据进行分析发现,该方案在保证减振弹性管弹性的同时,其底部振幅明显减弱。  相似文献   
9.
介绍了目前最炙手可热的REST架构风格,该风格顺应Web2.0的兴起,完美的匹配了云计算时代来临的可扩展要求,在各种应用场景中都得到了充分的表现。根据其技术特点,分析了该风格的API在移动通信网络管理中的应用,从网管系统内部、网管系统之间以及网管系统与上层APP应用之间等多方面对是否适用于REST风格以及如何在合适的位置使用REST API进行了分析。  相似文献   
10.
The aim of the research is evaluating the classification performances of eight different machine-learning methods on the antepartum cardiotocography (CTG) data. The classification is necessary to predict newborn health, especially for the critical cases. Cardiotocography is used for assisting the obstetricians’ to obtain detailed information during the pregnancy as a technique of measuring fetal well-being, essentially in pregnant women having potential complications. The obstetricians describe CTG shortly as a continuous electronic record of the baby's heart rate took from the mother's abdomen. The acquired information is necessary to visualize unhealthiness of the embryo and gives an opportunity for early intervention prior to happening a permanent impairment to the embryo. The aim of the machine learning methods is by using attributes of data obtained from the uterine contraction (UC) and fetal heart rate (FHR) signals to classify as pathological or normal. The dataset contains 1831 instances with 21 attributes, examined by applying the methods. In the paper, the highest accuracy displayed as 99.2%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号