首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
电工技术   2篇
综合类   1篇
化学工业   1篇
能源动力   2篇
  2009年   2篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
纳米级固溶体Ce0.8Y0.2O1.9的反相微乳法控制合成   总被引:1,自引:1,他引:1  
尺寸可控、高分散和超细的纳米级固溶体的制备是获取高性能固体氧化物燃料电池的重要环节之一.采用水/CTAB/环己烷/中等碳链长度醇组成的反相微乳体系制备出了粒径分布均匀、平均晶粒尺寸为5.0~8.0 nm的Ce0.8Y0.2O1.9超细粉体,考察并初步讨论了反相微乳体系中几种因素对最终产物的尺寸和形貌的影响,包括助表面活性剂、不同水与表面活性剂摩尔比、反应物浓度、陈化时间、碱液浓度等.所得产物用TEM进行分析,结果表明,助表面活性剂、不同水与表面活性剂摩尔比及陈化时间对产物影响不大,但反应物浓度及碱液浓度对产物的晶粒粒径大小有一定的影响.  相似文献   
2.
阳极支撑平板状SOFC过电势模型及分析   总被引:1,自引:0,他引:1  
平板型固体氧化物燃料电池由于具有高效率、低污染物排放等特点,是未来发电的主要方向。当电池运行产生电流时,就会伴随电荷传输产生活化极化,伴随质量传输产生浓差极化,根据材料导电性的不同相应产生一定大小的欧姆极化,从而降低了燃料电池的开路电压,并对电流密度和输出功率产生影响。为了能使燃料电池更好地运行,就必须要了解对过电势产生影响的各种因素,所以建立了阳极支撑的平板状SOFC过电势模型,分析了电流密度、温度以及一些结构参数对三种过电势的影响,对阳极支撑型和电解质支撑型燃料电池的性能进行了比较。  相似文献   
3.
循环流化床锅炉飞灰中碳的形成机理   总被引:2,自引:1,他引:1  
通过对循环流化床(CFB)锅炉飞灰含碳量分布及飞灰残碳形态的测量、CFB燃烧温度下焦炭失活过程的试验研究以及流化床条件下煤颗粒燃烧过程的分析.探讨了循环流化床锅炉飞灰中碳的形成机理.结果表明:实际运行的CFB锅炉飞灰中含碳量具有明显的不均匀性,残碳集中于25~50 μm的飞灰颗粒内;真实密度和XRD测量均表明,焦炭失活的2个条件是温度和时间,温度高于800℃,焦炭失活开始发生,并且随着时间的增加,失活程度提高;焦炭颗粒长时间停留在主循环回路中,反应活性下降,由于颗粒的碎裂和磨耗,形成了飞灰中粒径较小的残碳;煤中的细小煤粒首次通过炉膛时未燃尽且未被分离器收集,形成了飞友中较大颗粒的残碳.  相似文献   
4.
为揭示合成气燃烧过程中氮氧化物的生成机理和抑制措施,利用详细化学反应机理动力学模型研究了CO2稀释对合成气对冲扩散火焰中氮氧化物生成的影响,结果表明:随着合成气成分的变化及稀释剂CO2的添加,扩散火焰结构及不同NO生成机理对总NOx排放的贡献发生显著变化;低火焰拉伸率下主要表现为热力型NO,但在高火焰拉伸率下,因CH4存在,使总NO生成高于不含CH4的合成气;随CO2稀释剂的添加,NOx的排放指数EI<,NOx>呈单调下降趋势,并且稀释空气的效果优于稀释燃料的效果.  相似文献   
5.
溶胶-凝胶低温燃烧合成法制备Sm0.15Gd0.05Ce0.8O1.9纳米粉体   总被引:3,自引:1,他引:3  
采用溶胶-凝胶与低温自蔓延燃烧相结合的方法合成了纳米级超细Sm0.15Gd0.05Ce0.8O1.9粉体,选用的合成体系有:柠檬酸-硝酸盐,甘氨酸-硝酸盐,EDTA络合-硝酸盐等方法。对所合成粉体进行了XRD,TEM及激光Raman光谱仪(laser Raman spectroscope,LRS)检测,研究了不同方法制备的粉体的结构及晶相。结果表明:XRD和LRS相结合能较好地表征固溶体的结构和纯度,几种方法合成的粉体为纯度高的掺杂氧化铈固溶体,晶粒尺寸较均匀,但分散性差。影响最终合成的超细粉体粒径的因素有:有机络合剂的种类、性质,有机络合剂与总金属阳离子比例及形成掺杂固溶体所需的温度。  相似文献   
6.
该文建立了平板状阳极支撑固体氧化物燃料电池气体输运三维模型,并对单电池作了数值模拟,分别从气体浓度分布、电势分布及浓度过电势来评价电池性能。结果表明:在高电流密度情况下,当燃料沿燃料通道方向流动未出现低燃料浓度区或产物浓度区时,电池电势在燃料流动方向上变化不大;高燃料利用率或高电流密度时,浓度过电势较高:在低反应物浓度时反应物浓度稍微变化会使浓度过电势有较大的变化;几何结构的变化对反应物在垂直于燃料流动方向阳极,电解质界面的均匀分布几乎没有影响,但对浓度过电势有一定的影响;随着阳极厚度的增大,浓度过电势也相应增大:当阳极孔隙结构参数ε/τ变大时,浓度过电势减小。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号