首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
电工技术   8篇
综合类   1篇
化学工业   10篇
能源动力   21篇
轻工业   1篇
无线电   3篇
一般工业技术   19篇
冶金工业   1篇
原子能技术   1篇
自动化技术   2篇
  2021年   1篇
  2016年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library. Then, the variable regions of heavy chain VH and light chain VL in each clone were fused to constant regions of heavy chain CH and light chain CL regions respectively. These fused genes were expressed in ExpiCHO-S cells to produce artificial humanized antibodies against Cripto-1. After evaluation of the expression levels, one clone was selected and the anti-Cripto-1 antibody was produced and purified. The purified antibody showed affinity to recombinant Cripto-1 at 1.1 pmol and immunoreactivity to cancer tissues and cell lines. The antibody was available to detect the immunoreactivity in tissue microarrays of malignant tumors as well as in Cripto-1 overexpressing cells. Simultaneously, the antibody exhibited the potential to suppress the growth of human colon cancer derived GEO cells overexpressing Cripto-1 with IC50 at approximately 110 nM. The artificially humanized antibody is proposed to be a good candidate to target cancer cells overexpressing Cripto-1.  相似文献   
2.
This article aims at clarifying the possible design and operating conditions for silica gel-water adsorption refrigeration cycles driven by near-ambient temperature waste heat sources (between 45 and 75°C) with relatively small regenerating temperature lifts (15 to 45 K). A two-stage silica gel-water advanced adsorption chiller is introduced and a simulation model of the chiller was developed to analyze the influence of operating and design conditions on the system performance (coefficient of performance, COP, and cooling capacity). It was hypothesized that the proposed chiller can be driven by low temperature waste heat at 55°C to produce effective cooling. Simulation results show that the operating conditions such as cycle time and hot and cooling water inlet temperature have an influential effect on cooling capacity and COP. COP is proportional to cycle time and heat transfer coefficient as well as inversely proportional to the cooling water inlet temperature, while there are optimum values of hot water temperature and silica gel weight for maximum COP. Cooling capacity mainly improves with the addition of silica gel weight and decreases as cooling water temperature increases. Simulation results also revealed that the system performance can be improved significantly by setting the design and operating conditions optimally.  相似文献   
3.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   
4.
Tangential velocity change with time of polyacrylamide solution, which had not only viscosity but also elasticity, in a concentric annulus after step motion of the inner cylinder was measured by using a LDV method. By adapting a conception of a second order lag control system which had a feedback connection, an equation for estimating the velocity change with time was presented. Each parameter in the equation was determined based on the experimental results, and the relationships between each parameter and viscosity or elasticity of the solutions was made clear. By using this equation, the tangential velocity change with time of a viscoelastic liquid in the annulus can be estimated when the viscosity and elasticity of the liquid and the rotational speed of the inner cylinder are given. Additionally, it was confirmed that the equation was applicable to the case of polyethyleneoxide solution, which had different ranges of the viscosity and elasticity from those of the test solutions described above.  相似文献   
5.
6.
To convert cellulosic organics contained in industrial paper sludge into glucose, reaction of pseudo paper sludge composed of cellulose and inorganic compounds (calcium carbonate (CaCO3), talc (Mg3(Si4O10)(OH)2), kaolin (Al2(Si2O5)(OH)4)) under hydrothermal conditions was studied. Significant amounts of glucose (ca. 23%) could be produced from cellulose in the absence of CaCO3 for reaction in water at 523 K and 12 min reaction time. On the other hand, in the presence of CaCO3, most glucose decomposed over all conditions, whereas the addition of talc and kaolin to the mixtures increased the glucose yield to about 30%. For the case of chemical recycle of paper sludge with hydrothermal treatment to obtain d-glucose, it can be concluded that it is preferable to separate the calcium carbonate from the paper sludge before hydrothermal treatment.  相似文献   
7.
Energy service business, or energy service company (ESCO), is expanding among industrial users as a means of energy saving. The ESCO business normally tends to become a long-term operation. During the operation, fluctuations of fuel and electricity costs significantly impact on the stability of the profit from ESCO business. Therefore, it is essential to reduce the risk of fuel and electricity cost fluctuations. Generally, a transaction called “financial derivative” is used as a measure of hedging against the fuel price fluctuation. In the case of ESCO business, it is necessary to manage the risk of both electricity and fuel price fluctuations because the variation in electricity price strongly affects the profit from ESCO as that in fuel price does.  相似文献   
8.
The objectives of this paper are to obtain experimental data of surface tension and interfacial tension, and to develop a new model of Marangoni convection for the best selection of heat transfer additive in ammonia–water absorption systems. The basic mechanism of Marangoni convection in absorption systems was reviewed from the viewpoints of the surface tension and the interfacial tension gradients. Marangoni convection was successfully visualized using a shadow graphic method. The solubility limits of the additives in ammonia–water solution ranged from 500 to 3000 ppm depending on the heat transfer additives. These values are much higher than those in LiBr–H2O solution in which the solubility ranged from 70 to 400 ppm. The temperature gradient of the surface tension should not be a criterion for Marangoni convection inducement in NH3–H2O system. The concentration and temperature gradients of the interfacial tension should not be a criterion for Marangoni convection inducement in NH3–H2O system. The magnitude of the interfacial tension did not affect the occurrence of Marangoni convection either. It was found that addition of the heat transfer additive beyond the solubility limit assisted Marangoni convection occurrence, but should not be a criterion for Marangoni convection inducement. It was proposed that the radical-out model should be a criterion for Marangoni convection inducement within the solubility limit in NH3–H2O system.  相似文献   
9.
Thermal heat driven adsorption systems using natural refrigerants have been focused on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance in terms of system cooling capacity and coefficient of performance (COP). The objective of this paper is to improve the performance of thermally powered adsorption cooling system by selecting new adsorbent–refrigerant pair. Adsorption capacity of adsorbent–refrigerant pair depends on the thermophysical properties (pore size, pore volume and pore diameter) of adsorbent and isothermal characteristics of the pair. In this paper, the thermophysical properties of two PAN types of activated carbon fibers (FX-400 and KF-1000) are determined from the nitrogen adsorption isotherms. The standard nitrogen gas adsorption/desorption measurements on various adsorbents at liquid nitrogen of temperature 77.3 K were performed. Surface area of each adsorbent was determined by the Brunauer, Emmett and Teller (BET) plot of nitrogen adsorption data. Pore size distribution was measured by the Horvath and Kawazoe (HK) method. As of the adsorption/desorption isotherms, FX-400 shows very small hysteresis when the value of P/Po exceeds 0.4, while KF-1000 has no hysteresis in the whole range of P/Po. The adsorption capacity of FX-400 is about 30% higher than that of KF-1000. The adsorption equilibrium data of activated carbon fiber (ACF)-methanol are presented and correlated with simple equations. The adsorption equilibrium data of ACF (KF-1000)-water also presented in order to facilitate comparison with those of ACFs-methanol pair. The results will contribute significantly in designing the adsorber/desorber heat exchanger for thermally driven adsorption cooling system.  相似文献   
10.
In this paper, the performance of air cycle refrigerator integrated desiccant system used to cool and dehumidify warehouse is analyzed theoretically. Simulation analysis is carried out to calculate the system coefficient of performance, cooling effects and the humidity change under different values of pressure ratio, storage zone temperature inside dock and outdoor air conditions. Also, the effect of the air cycle and the rotor parameters on the system performance is evaluated. From the simulation result it is found that, the desiccant system has the ability to supply air to the dock area at very low humidity. The system coefficient of performance increases due to the exhaust heat recovery on the desiccant system, and this enhancement can be more than 100%. The coefficient of performance of the proposed system is greater than that of a conventional system under the same operating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号