首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
电工技术   3篇
化学工业   4篇
无线电   3篇
一般工业技术   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2004年   3篇
  2001年   1篇
  1989年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma‐enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN‐coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sacrificial polymeric nanofiber template. SEM studies have shown that there is a critical wall thickness value depending on the template's average fiber diameter for AlN hollow nanofibers to preserve their shapes after the template has been removed by calcination. Best morphologies were observed for AlN hollow nanofibers prepared by depositing 800 cycles (corresponding to ~69 nm) on nanofiber templates having ~330 nm average fiber diameter. TEM images indicated uniform wall thicknesses of ~65 nm along the fiber axes for samples prepared using templates having ~70 and ~330 nm average fiber diameters. Synthesized AlN hollow nanofibers were polycrystalline with a hexagonal crystal structure as determined by high‐resolution TEM and selected area electron diffraction. Chemical compositions of coated and calcined samples were studied using X‐ray photoelectron spectroscopy (XPS). High‐resolution XPS spectra confirmed the presence of AlN.  相似文献   
2.
The fabrication and characterisation of a double-arm cantilever-type metallic DC-contact MEMS actuator with low pull-down voltage are reported. Bi-layer TiW cantilevers with an internal stress gradient were fabricated using a microwave-compatible fabrication process. Owing to its small size, cantilever length (L = 5-50 mum) and width (W = 2-40 mum), i.e. ~10-100 times smaller in lateral dimensions than a standard MEMS actuator, this actuator showed actuation voltages lower than 10 V. RP measurements of the 10 mum-wide actuators yielded an average insertion loss less than 1 dB and isolation higher than 40 dB up to 25 GHz. The developed actuator is well suited for integration in reconfigurable microwave circuits and systems such as reconfigurable antennas and arrays.  相似文献   
3.
We report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH3). At 185 °C, deposition rate saturated for TMA and NH3 doses starting from 0.05 and 40 s, respectively. Saturative surface reactions between TMA and NH3 resulted in a constant growth rate of ~ 0.86 Å/cycle from 100 to 200 °C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (≥ 225 °C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 °C were investigated by X-ray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 °C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at ~ 5.8 eV and an optical transmittance of > 95% in the visible region of the spectrum.  相似文献   
4.
We report p-i-n type InSb-based high-speed photodetectors grown on GaAs substrate. Electrical and optical properties of photodetectors with active areas ranging from 7.06/spl times/10/sup -6/ cm/sup 2/ to 2.25/spl times/10/sup -4/ cm/sup 2/ measured at 77 K and room temperature. Detectors had high zero-bias differential resistances, and the differential resistance area product was 4.5 /spl Omega/ cm/sup 2/. At 77 K, spectral measurements yielded high responsivity between 3 and 5 /spl mu/m with the cutoff wavelength of 5.33 /spl mu/m. The maximum responsivity for 80-/spl mu/m diameter detectors was 1.00/spl times/10/sup 5/ V/W at 4.35 /spl mu/m while the detectivity was 3.41/spl times/10/sup 9/ cm Hz/sup 1/2//W. High-speed measurements were done at room temperature. An optical parametric oscillator was used to generate picosecond full-width at half-maximum pulses at 2.5 /spl mu/m with the pump at 780 nm. 30-/spl mu/m diameter photodetectors yielded 3-dB bandwidth of 8.5 GHz at 2.5 V bias.  相似文献   
5.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   
6.
We report on the electrical properties of ZnO films and devices grown on different substrates by radio-frequency magnetron sputtering. The films grown on c-plane sapphire were annealed in the range 800–1,000°C. The electron concentration increased with annealing temperature reaching 1.4×1019 cm?3 for 1,000°C. Mobility also increased, however, reaching its maximum value 64.4 cm2/V · sec for 950°C anneal. High-performance Schottky diodes were fabricated on ZnO films grown on n-type 6H-SiC by depositing Au/Ni(300/300 Å). After annealing at 900°C, the leakage current (at ?5 V reverse bias) decreased from 2.2 × 10?7 A to ~5.0 × 10?8 A after annealing at 900°C, the forward current increased by a factor of 2, and the ideality factor decreased from 1.5 to 1.03. The ZnO films were also grown on p-type 6H-SiC, and n-ZnO/p-SiC heterostructure diodes were fabricated. The p-n diode performance increased dramatically after annealing at 950°C. The leakage current decreased from 2.0×10?4 A to 3.0×10?7 A at ?10 V reverse bias, and the forward current increased slightly from 2.7 mA to 3.9 mA at 7 V forward bias; the ideality factor of the annealed diode was estimated as 2.2, while that for the as-grown sample was considerably higher.  相似文献   
7.
In this work, nanostructured CdO films with different coumarin contents in the growth solution were fabricated on glass substrates by the SILAR method. The effects of coumarin content in the bath on optical, structural and morphological properties were studied by means of (UV–vis) spectrophotometer, SEM and XRD analysis. The analysis showed that the band gaps, surface morphologies and XRD peak intensities of the CdO films were found to change with coumarin content. A change in the band gap energy can be attributed to the improvement in crystallinity of the samples. XRD analysis showed that, the films have poly-crystalline structures with decent crystallinity levels.  相似文献   
8.
The role of grain boundary misorientation angles on the dislocation–grain boundary interactions was incorporated into a micro hardening scheme. The current formulation is applicable to both coarse‐ and ultrafine‐grained alloys, and evidences the experimentally observed dominant role of the misorientation angles on the deformation response of the latter.  相似文献   
9.
The role of grain boundary misorientation angle (GBMA) distribution on slip activity in a high-manganese austenitic steel was investigated through experiments and simulations. Crystal plasticity simulations incorporating the GBMA distribution and the corresponding dislocation–grain boundary interactions were conducted. The computational analysis revealed that the number of active slip systems decreased when GBMA distribution was taken into account owing to the larger volume of grain boundary–dislocation interactions. The current results demonstrate that the dislocation–grain boundary interactions significantly contribute to the overall hardening, and the GBMA distribution constitutes a key parameter dictating the slip activity.  相似文献   
10.
High-performance vertically illuminated Schottky photodiodes with indium-tin-oxide (ITO) Schottky layers were designed, fabricated, and tested. Ternary and quarternary III-V material systems (AlGaN-GaN, AlGaAs-GaAs, InAlGaAs-InP, and InGaAsP-InP) were utilized for detection in the ultraviolet (UV) (/spl lambda/<400 nm), near-IR (/spl lambda//spl sim/850 nm), and IR (/spl lambda//spl sim/1550 nm) spectrum. The material properties of thin ITO films were characterized. Using resonant-cavity-enhanced (RCE) detector structures, improved efficiency performance was achieved. Current-voltage, spectral responsivity, and high-speed measurements were carried out on the fabricated ITO-Schottky devices. The device performances obtained with different material systems are compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号