首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   0篇
电工技术   1篇
化学工业   31篇
金属工艺   1篇
建筑科学   2篇
能源动力   1篇
轻工业   4篇
无线电   3篇
一般工业技术   38篇
冶金工业   7篇
自动化技术   9篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   4篇
  1973年   1篇
  1972年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
Matching with don't-cares and a small number of mismatches   总被引:1,自引:0,他引:1  
In matching with don't-cares and k mismatches we are given a pattern of length m and a text of length n, both of which may contain don't-cares (a symbol that matches all symbols), and the goal is to find all locations in the text that match the pattern with at most k mismatches, where k is a parameter. We present new algorithms that solve this problem using a combination of convolutions and a dynamic programming procedure. We give randomized and deterministic solutions that run in time O(nk2logm) and O(nk3logm), respectively, and are faster than the most efficient extant methods for small values of k. Our deterministic algorithm is the first to obtain an O(polylog(k)⋅nlogm) running time.  相似文献   
2.
Spark plasma sintering (SPS) is a newly discovered old technique which recently has been used for superfast densification of ceramic powders. Simultaneous application of pulsed high dc current densities and load is the necessary condition for rapid and full densification of ceramic powders by SPS. Commercial nanocrystalline magnesium oxide (nc-MgO) and yttrium aluminum garnet (nc-YAG) powders were densified to optical transparency using spark plasma sintering at distinctly different homologous temperatures (0.3 T m for nc-MgO and 0.7 T m for nc-YAG). The observed microstructure, density and grain size evolutions versus the SPS temperature were analyzed. The enhanced densification of the nc-MgO powder at the present SPS conditions was related to plastic deformation followed by diffusion processes. Densification of nc-YAG powder was described by the formation of viscous layer at the particle surfaces and corresponding densification by grain rotation and diffusion through the liquid phase. Densification by normal grain growth takes place at higher relative densities, regardless of the material.  相似文献   
3.
Dense nanocrystalline ZrO2-3 wt% Y2O3 ceramics with grain sizes ranging between 23 to 130 nm were tested by ultrasonic pulse echo and Vickers hardness. The elastic modulus and hardness results were corrected for the residual porosity and the phase content. The corrected elastic moduli exhibited continuous decrease with decrease in the grain size. In contrast, no correlation was found between the corrected hardness and grain size. The percolative composite model was used to describe the changes in the elastic moduli in terms of percolation of the elastic wave through the intercrystalline phase at the percolation threshold. The absence of correlation with the hardness results was explained due to the other energy absorbing mechanisms such as microcracking beneath the indenter.  相似文献   
4.
The effects of the applied electric field during the spark plasma sintering of ceramic nanoparticles were examined at various stages of the process. It was assumed that local intensification of the electric field arises due to the nanoscale structural features. Enhanced surface conductivity is expected in the nanoparticles during the heating, which otherwise are electrically non-conducting as a bulk. Percolation of the electric current at “optimal” electrical conductivity is obtained by fractal dimension. The defective nanoparticle surfaces experience charging–discharge cycles which lead to local breakdown and to plasma formation due to the ionized surface molecules. High local temperatures which evolved in a nonlinear fashion at the particle surfaces lead to enhanced sintering and densification kinetics, consistent with the flash sintering phenomenon. The contribution of the pondermotive force to the enhancement of the diffusion kinetics is discussed. Temperature windows for enhanced densification kinetics via plastic deformation or plasma-assisted processes are estimated for MgO, Al2O3, and YAG.  相似文献   
5.
Nanocrystalline Y2O3 powders with 18 nm crystallite size were sintered using spark plasma sintering (SPS) at different conditions between 1100 and 1600 °C. Dense specimens were fabricated at 100 MPa and 1400 °C for 5 min duration. A maximum in density was observed at 1400 °C. The grain size continuously increased with the SPS temperature into the micrometer size range. The maximum in density arises from competition between densification and grain growth. Retarded densification above 1400 °C is associated with enhanced grain growth that resulted in residual pores within the grains. Analysis of the grain growth kinetics resulted in activation energy of 150 kJ mol?1 and associated diffusion coefficients higher by 103 than expected for Y3+ grain boundary diffusion. The enhanced diffusion may be explained by combined surface diffusion and particle coarsening during the heating up with grain boundary diffusion at the SPS temperature.  相似文献   
6.
The separation of fine aerosol particles by a packed granular-bed filter, enhanced by external electrostatic fields, was studied experimentally and theoretically. The filtration efficiencies of charged and neutralized aerosols were measured for external fields aligned with the air flow, transverse to the flow, and opposite to the flow. Theoretical models of electrostatically enhanced granular-bed filtration of micrometer and submicrometer particles were developed. Experimental results which demonstrate the relative merit of each configuration were presented and compared with the theory. The parallel-field configuration yielded the best filtration efficiency followed by the transverse configuration.  相似文献   
7.
A diffusionless cubic (c)→metastable tetragonal (t') phase transformation occurs in certain alloys in the ZrO2-Y2O3 system on quenching from elevated temperatures. Microstructural features due to this phase transformation, principally anti-phase domain boundaries (APB's) and mechanical accommodation twins, have been characterized using transmission electron microscopy. Certain differences between our interpretation and those of other workers are discussed.  相似文献   
8.
Pure and dense nanocrystalline MgO with grain size ranging between 25 and 500 nm were prepared by hot-pressing. Vickers microhardness was found to increase with decrease in the grain size down to 130 nm, following the Hall–Petch relation. Further decrease in the grain size was followed by continuous decrease in microhardness. A composite model was used to describe the microhardness behavior in terms of plastic yield of the nanocrystalline grains accompanied by strain accommodation and nanocracking at the grain boundaries (gb’s). Good agreement between the experimental and the calculated values indicates that gb’s may have significant effect on strengthening and ductility of nanocrystalline-MgO ceramics in the nanometer size range. Critical grain size exists below which limited plastic deformation within the grains and nanocracking at gb’s enhance the brittleness of the ceramic.  相似文献   
9.
Deposition of trichlorosilanes with ester groups at their remote termini provides a convenient entry to carboxylic acid-bearing siloxane-anchored self-assembled monolayers. The de-esterification of these esters has been optimized to minimize monolayer damage, and their quantitative re-esterification provides clear evidence for the stability of these systems. Both the structure of the ester-terminated monolayer and its de-esterification/esterification chemistry can be easily monitored by FTIR-ATR measurements. This spectroscopic tool, together with a liquid cell that enables IR spectra to be measured in an aqueous environment, enables a detailed structural analysis of the carboxylic acid-bearing siloxane-anchored self-assembled monolayers and an assessment of their acid/base behavior (by in situ titration). The use of D2O instead of H2O for the in situ titration experiments also improves the available IR window. Both monomeric and dimeric/oligomeric acid groups are seen, and the relative ease of deprotonation of these various species can be directly monitored. Monomers of alkyl carboxylic acids that are hydrogen bonded only to surrounding water molecules have a pKa = 4.9, while the pKa for the aggregated molecules is 9.3. Similar behavior is seen for surface-bound benzoic acids, where the two pKa values are 4.7 and 9.0. The influence of temperature on these structures and their chemistry has been explored to a limited extent as well. When the alkylcarboxylic acid system is cooled to 10 °C, the pKa value for the acid monomers is reduced from 4.9 to 4.5 and increases from 9.3 to 10.3 for the aggregates.  相似文献   
10.
SiC and TiB2 were electrochemically coated with Cr2O3 from a 0.1 M aqueous solution of chromium nitrate hydrate with ethanol additives. On both substrate materials poly-crystalline Cr2O3 was formed at current densities from 5 to 50 mA/cm2 and deposition durations of 5 to 30 min. The coating weight increased with current density and with deposition time. The as-deposited coatings contained microcracks due to drying shrinkage. Microstructural observations indicate that sintering of the Cr2O3 coatings on TiB2 at 1100°C for 1 n in a reducing atmosphere in a closed graphite crucible causes the densification of the coating via a liquid phase, which forms by oxidation of TiB2. Under similar conditions, the Cr2O3 coatings on SiC may be sintered via an evaporation–condensation mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号