首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
电工技术   2篇
化学工业   1篇
无线电   1篇
冶金工业   1篇
  2019年   2篇
  2008年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Constrained length minimum inductance gradient coil design   总被引:1,自引:0,他引:1  
A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.  相似文献   
2.
Prepolarized magnetic resonance imaging (PMRI) uses two pulsed electromagnets to achieve high-field image quality with the benefits of low-field data acquisition. The principal challenge with all resistive MRI systems is the implementation of a highly precise magnet current supply. The noise current through the magnet is fundamentally limited by the current transducer used to provide feedback and the voltage reference used to generate the demand signal. Field instability in the main field magnet can both corrupt the received data and degrade the robustness of Carr?Purcell?Meiboom?Gill (CPMG) echo trains, which are paramount to efficient imaging in PMRI. In this work, we present the magnet control system that achieved sufficient field stability for PMRI at Prepolarized magnetic resonance imaging (PMRI) uses two pulsed electromagnets to achieve high-field image quality with the benefits of low-field data acquisition. The principal challenge with all resistive MRI systems is the implementation of a highly precise magnet current supply. The noise current through the magnet is fundamentally limited by the current transducer used to provide feedback and the voltage reference used to generate the demand signal. Field instability in the main field magnet can both corrupt the received data and degrade the robustness of Carr?Purcell?Meiboom?Gill (CPMG) echo trains, which are paramount to efficient imaging in PMRI. In this work, we present the magnet control system that achieved sufficient field stability for PMRI at $0.5/0.13$ T, identify the dominant sources of noise in the control system, examine the imaging artifacts that can occur if the field stability is insufficient, and identify how the design can be improved for better field stability, should it be required for future implementations of PMRI.  相似文献   
3.
Upconversion nanoparticles with special fluorescence and magnetic properties have been considered an alternative contrast agent for multiple bioimaging techniques. It is important to understand the effects of the surface properties and dosage of upconversion nanoparticles on both the magnetic resonance (MRI) image and the photoluminescence spectrum. Here, NaGdF4: Er3+, Yb3+ upconversion nanoparticles (UCNPs) modified with amine functional group were produced through a one‐pot thermal decomposition. The average length of the cubic UCNPs is estimated at 53 ±13 nm. The effect of the dosage of amine modified UCNPs on the MRI image is investigated. The T1 and T2 relaxivities of the amine modified UCNPs in agarose gel at 3 T are r1 = 6.79 ±0.14 and r2 = 17.0 ±0.18 (mmol/L)?1 s?1, which are comparable to the relaxivities of commercially available MRI contrast agents. In addition, the photoluminescence of the amine modified UCNPs at low concentrations < 150 µg/mL are further investigated with the excitation wavelength (λex) at 980 nm. The internalization of the amine modified UCNPs cultured with human umbilical vascular endothelial cells (HUVEC) is observed by the fluorescence imaging. Meanwhile, T1‐weighted MRI imaging of HUVEC cells treated with amine modified UCNPs at 10 µg/mL can be obtained. No significant toxic effect on cells is found when the concentration of the amine modified UCNPs is < 300 µg/mL. This study indicates that a low concentration of amine‐modified NaGdF4: Er3+, Yb3+ UCNPs can be used as the contrast agent for both fluorescence imaging and magnetic resonance imaging.  相似文献   
4.
There is great interest in the non-destructive capabilities of magnetic resonance microscopy for studying murine models of both disease and normal function; however, these studies place extreme demands on the MR hardware, most notably the gradient field system. We designed, using constrained current minimum inductance methods. and fabricated a complete, unshielded three-axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000 mT m−1 in rise times of less than 50 μs with an inner coil diameter of 5 cm. The coil was wire-wound using a rectangular wire that minimizes the deposited power for a given gradient efficiency. Water cooling was also incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot echo planar imaging (EPI) is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. The final coil is capable of the collection of single shot EPI images with 6 mm field of view and 94 μm isotropic voxels at imaging rates exceeding 50 s−1.  相似文献   
5.
Magnetic Resonance Materials in Physics, Biology and Medicine - To test PEEK implant-associated MRI artifacts, a method for blinding MRI readers, the repeatability of cartilage thickness measures...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号