首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
电工技术   4篇
化学工业   9篇
能源动力   6篇
轻工业   1篇
无线电   1篇
一般工业技术   14篇
自动化技术   12篇
  2023年   6篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Polyacrylamide gel (PAMG) method is a simple, fast and cheap method used for the synthesis of a wide variety of nanopowders. However, no adequate results have been reported on the thermal degradation behavior of PAMG which can be very effective on the final product properties. In this work, thermal degradation behavior of PAMG in the presence of TiCl4 as a precursor salt for synthesis of TiO2 nanoparticles was examined in comparison with linear polyacrylamide (LPAM) and pure PAMG by thermogravimetry/differential thermal analysis. Their thermal degradation kinetics was investigated, as well. The results showed that thermal degradation of all samples occurred in two stages at different onset temperatures. Despite the high thermal stability of pure PAMG compared to LPAM, the presence of TiCl4 as a mineral material in PAMG structure decreases the thermal degradation onset temperature, considerably. Furthermore for LPAM and PAMG, majority of weight loss occurs in the second stage, but in PAMG with TiCl4 the weight loss occurs mainly at the first stage. For more detailed investigation, residual materials were characterized by Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques, attributing this trend to the presence of mineral materials in PAMG structure. XRD and transmission electron microscopy were also applied to confirm anatase crystalline structure and nanoscale distribution of the TiO2 particles synthesized via PAMG method.  相似文献   
2.
Zn- and Ca-doped ErBa2Cu3O7−δ were successfully prepared via coprecipitation method using metal acetates as the starting salts. The precipitated samples were calcined for 20 h at 900 °C and sintered at 920 °C for 24 h. All heat treatments were carried out under oxygen environment. Results show that there is a selectivity of the doping site depending on the ionic radius of the dopant. Furthermore, increase in the critical temperature, T c , was observed in 0.05 mole of calcium and zinc doped samples. The difference in ionic radius of the dopant led to the increase in porosity as the ionic radius decreases. On the other hand, structural distortion increased as the difference of ionic radius became larger.  相似文献   
3.
Abstract

In this paper, a new control approach using an optimal linear control with prescribed degree of stability for modular multi-level converters (MMC) is presented and analyzed. The proposed controller relies on a linear quadratic regulator with integral action which brings the ability of state variable reference tracking for modular multi-level converters. Since MMC is a complex system with several state variables, a unified control system design for this system is vital. The proposed controller of this study is designed to obtain wider stability margin thanks to the implementation of prescribed degree of stability concept to minimize the quadratic performance index of the control structure. By means of this method, the poles of the closed-loop system will be shifted to the desired places in the left half side of the S-plane. The main advantages of this control strategy compared to previous methods are that it will be possible to control the state of energy for each phase separately, while there will be superior tolerance to nonlinearities and the enhanced stability margin with less sensitivity to plant-parameter variations. The performance of the designed controller is verified through MATLABTM simulations (The MathWorks, Natick, MA, USA) with the nonlinear model of MMC.  相似文献   
4.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
5.
In this paper, a novel configuration of the cascaded multilevel inverters using series connection of new sub-multilevel basic blocks is presented. The basic structure of the proposed sub-multilevel inverter is made of three isolated batteries and eight unidirectional power switches. Hereby, by changing the polarity of one of such batteries and two power switches, two different modules of sub-multilevel inverters can be extracted that each of them is able to be incorporated into two different cascaded structures as the series basic blocks. Contemporary, to determine the suitable magnitudes of the integrated batteries, two different algorithms for each topology along with their relevant mathematical analysis have been also given. In this study, a complete comparison between the proposed topologies and several recently presented structures has been conducted. The compiled comparisons can prove the fact that both the proposed cascaded inverters are capable of generating a higher number of output voltage levels with less number of switching counts. Other advantages of these structures are reduction of voltage sources numbers, DC sources variety, value of total blocking voltage, and also conducting losses. In order to demonstrate the correct operation of the proposed structures and presented algorithms, some experimental results will be also shown.  相似文献   
6.
The Journal of Supercomputing - Spin-transfer torque random access memory (STT-RAM) is a suitable alternative to DRAM in the large last-level caches (L3Cs) on account of low leakage, the absence of...  相似文献   
7.

An eight-channel wavelength demultiplexer by cascading of ring resonators (RRs) in photonic crystal (PhC) structure is proposed in this paper. In designing of this demultiplexer, we used eight square-shaped PhC RRs with different refractive index (RI) of defect rods to generate a distinctive resonance wavelength. Each PhC RR has a specific resonance wavelength with tuning a variety of design parameters such as RI of a whole, defect and inner rods and radius of defect rods. In operating wavelength of λ0?=?1497 nm, the transmission power and quality factor (Q) of single RR are discovered as 96% and 1000, respectively. The average power transmission, channel spacing, crosstalk and full width at half maximum are found by finite difference time domain method to be about 96?±?1%, 2.25 nm, ??35 dB and 1.5 nm, respectively. Simulation outcomes demonstrate that the designed demultiplexer has a proper operation. The footprint of the designed device is about?~?115 μm2, which makes this device a promising for future photonic integrated circuits.

  相似文献   
8.
In this Technical Note, the problem of determining the temperature distribution in a pin fin with power‐law heat transfer coefficients is addressed. It is demonstrated that the governing fin equation, a nonlinear second‐order differential equation, is exactly solvable for the entire range of the exponent n in the power‐law heat transfer coefficients. The exact, closed‐form analytical solutions in implicit form are convenient for physical interpretation and optimization for maximum heat transfer. Furthermore, it is proved that the exact solutions have three different structures: (1) dual in the range of , (2) unique or dual in the range of , and (3) unique in the range of . Additionally, exact analytical expressions for the fin efficiency and the fin effectiveness are provided, both as a function of the dimensionless fin parameter for the gamma of n under study.  相似文献   
9.
In this paper the meshless local radial point interpolation (MLRPI) method is applied to simulate a nonlinear partial integro-differential equation arising in population dynamics. This PDE is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. In MLRPI method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares in two dimensions and spheres or cubes in three dimensions. The point interpolation method is proposed to construct shape functions using the radial basis functions. A one-step time discretization method is employed to approximate the time derivative. To treat the nonlinearity, a simple predictor–corrector scheme is performed. Also the integral term, which is a kind of convolution, is treated by the cubic spline interpolation. The numerical studies on sensitivity analysis and convergence analysis show that our approach is stable. Finally, two numerical examples are presented showing the behavior of the solution and the efficiency of the proposed method.  相似文献   
10.
Frontal polymerization (FP), a propagating reaction wave driven by exothermic polymerization, is increasingly considered for the rapid fabrication of fiber-reinforced composites. However, the effect of the fibers on the FP reaction has not yet been explored. In this contribution, we demonstrate that thermally conductive continuous elements accelerate FP using an experimental model system and finite-element-based numerical simulations. Furthermore, the degree of acceleration is shown to be affected by the amount of available monomer in the system. These results suggest that thermally conductive carbon fiber reinforcement may facilitate FP for composite manufacturing. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47418.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号