首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   25篇
  国内免费   5篇
电工技术   7篇
综合类   7篇
化学工业   75篇
金属工艺   9篇
机械仪表   12篇
建筑科学   1篇
矿业工程   2篇
能源动力   11篇
轻工业   10篇
水利工程   10篇
石油天然气   1篇
无线电   27篇
一般工业技术   39篇
冶金工业   8篇
自动化技术   36篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   17篇
  2020年   14篇
  2019年   22篇
  2018年   19篇
  2017年   15篇
  2016年   23篇
  2015年   14篇
  2014年   21篇
  2013年   26篇
  2012年   22篇
  2011年   19篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2001年   1篇
  1997年   1篇
  1981年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
1.
Protection of Metals and Physical Chemistry of Surfaces - In this study, the inhibitive performance of 2-mercaptobenzothiazole (2MBT) and 2-aminobenzothiazole (2ABT) were investigated on API-5L X60...  相似文献   
2.
We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel.  相似文献   
3.
4.
This study reported the synthesis of fluorescent hydroxyapatite/alginate/carbon quantum dots (HA/Alg/CQDs) nanocomposites via the co-precipitation technique. The N-doped CQDs as a new class of fluorescent materials were prepared by the citric acid pyrolysis method, with an average size around 4 nm. Physical, chemical, and optical properties of the synthesized nanocomposites were investigated by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), UV–visible spectroscopy, and photoluminescence (PL) spectroscopy, respectively. The PL spectroscopy data verified the favorable in vitro luminescent emission of the HA/Alg/CQDs nanocomposites in comparison with HA/Alg and HA samples. The XRD patterns of the prepared samples confirmed the formation of crystalline HA in all composites, possessing a Ca/P ratio around 1.5 as obtained by EDX elemental analysis. The FESEM analysis exhibited HA nanoplates that homogeneously distributed throughout the alginate matrix. Therefore, the synthesized nanocomposites could be regarded as potential trackable drug carriers for hard tissue engineering applications.  相似文献   
5.
This paper considers formation control of snake robots. In particular, based on a simplified locomotion model, and using the method of virtual holonomic constraints, we control the body shape of the robot to a desired gait pattern defined by some pre-specified constraint functions. These functions are dynamic in that they depend on the state variables of two compensators which are used to control the orientation and planar position of the robot, making this a dynamic maneuvering control strategy. Furthermore, using a formation control strategy we make the multi-agent system converge to and keep a desired geometric formation, and enforce the formation follow a desired straight line path with a given speed profile. Specifically, we use the proposed maneuvering controller to solve the formation control problem for a group of snake robots by synchronizing the commanded velocities of the robots. Simulation results are presented which illustrate the successful performance of the theoretical approach.  相似文献   
6.
Permanent magnets based on neodymium-iron-boron (Nd-Fe-B) alloys provide the highest performance and energy density, finding usage in many high-tech applications. Their magnetic performance relies on the intrinsic properties of the hard-magnetic Nd2Fe14B phase combined with control over the microstructure during production. In this study, a novel magnetic hardening mechanism is described in such materials based on a solid-state phase transformation. Using modified Nd-Fe-B alloys of the type Nd16Febal-x-y-zCoxMoyCuzB7 for the first time it is revealed how the microstructural transformation from the metastable Nd2Fe17Bx phase to the hard-magnetic Nd2Fe14B phase can be thermally controlled, leading to an astonishing increase in coercivity from ≈200 kAm−1 to almost 700 kAm−1. Furthermore, after thermally treating a quenched sample of Nd16Fe56Co20Mo2Cu2B7, the presence of Mo leads to the formation of fine FeMo2B2 precipitates, in the range from micrometers down to a few nanometers. These precipitates are responsible for the refinement of the Nd2Fe14B grains and so for the high coercivity. This mechanism can be incorporated into existing manufacturing processes and can prove to be applicable to novel fabrication routes for Nd-Fe-B magnets, such as additive manufacturing.  相似文献   
7.
Flash spark plasma sintering (flash SPS) is an attractive method to obtain Nd–Fe–B magnets with anisotropic magnetic properties when starting from melt-spun powders. Compared to the benchmark processing route via hot pressing with subsequent die upsetting, flash SPS promises electroplasticity as an additional deformation mechanism and reduced tool wear, while maximizing magnetic properties by tailoring the microstructure—fully dense and high texture. A detailed parameter study is conducted to understand the influence of Flash SPS parameters on the densification and magnetic properties of commercial MQU-F powder. It is revealed that the presintering conditions and preheating temperature before applying the power pulse play a major role for tailoring grain size and texture in the case of hot deformation via Flash SPS. Detailed microstructure and magnetic domain evaluation disclose the texture enhancement with increasing flash SPS temperature at the expense of coercivity. The best compromise between remanence and coercivity (1.37 T and 1195 kA m−1, respectively) is achieved through a combination of presintering at 500 °C for 120 s and preheating temperature of 600 °C, resulting in a magnet with energy product (BH)max of 350 kJm−3. These findings show the potential of flash SPS to obtain fully dense anisotropic nanocrystalline magnets with high magnetic performance.  相似文献   
8.
Stock market prediction is regarded as a challenging task in financial time-series forecasting. The central idea to successful stock market prediction is achieving best results using minimum required input data and the least complex stock market model. To achieve these purposes this article presents an integrated approach based on genetic fuzzy systems (GFS) and artificial neural networks (ANN) for constructing a stock price forecasting expert system. At first, we use stepwise regression analysis (SRA) to determine factors which have most influence on stock prices. At the next stage we divide our raw data into k clusters by means of self-organizing map (SOM) neural networks. Finally, all clusters will be fed into independent GFS models with the ability of rule base extraction and data base tuning. We evaluate capability of the proposed approach by applying it on stock price data gathered from IT and Airlines sectors, and compare the outcomes with previous stock price forecasting methods using mean absolute percentage error (MAPE). Results show that the proposed approach outperforms all previous methods, so it can be considered as a suitable tool for stock price forecasting problems.  相似文献   
9.
10.
Groundwater models are computer models that simulate or predict aquifer conditions by using input data sets and hydraulic parameters. Commonly, hydraulic parameters are extracted by calibration, using observed and simulated aquifer conditions. The accuracy of calibration affects other modeling processes, especially the hydraulic head simulation. Meta-heuristic algorithms are good candidates to determine optimal/near-optimal parameters in groundwater models. In this paper, two meta-heuristic algorithms: (1) particle swarm optimization (PSO) and (2) pattern search (PS) are applied and compared in the Ghaen aquifer, by considering the sum of the squared deviation (SSD) between observed and simulated hydraulic heads and the sum of the absolute value of deviation (SAD) between observed and simulated hydraulic heads as the objective functions. Results show that obtained values of the objective function are enhanced significantly by using the PS algorithm. Accordingly, PS improves (decreases) the SSD and SAD by 0.20 and 2.36 percent, respectively, compared to results reported by using the PSO algorithm. Results also indicate that the proposed PS optimization tool is effective in the calibration of aquifer parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号