首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
电工技术   5篇
化学工业   1篇
机械仪表   4篇
能源动力   4篇
水利工程   1篇
无线电   11篇
一般工业技术   3篇
冶金工业   5篇
自动化技术   10篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
Experiments with two formation controllers for marine unmanned surface vessels are reported. The formation controllers are designed using the nonlinear robust model-based sliding mode approach. The marine vehicles can operate in arbitrary formation configurations by using two leader-follower control schemes. For the design of these controller schemes 3 degrees of freedom (DOFs) of surge, sway, and yaw are assumed in the planar motion of the marine surface vessels. Each vessel only has two actuators; therefore, the vessels are underactuated and the lack of a kinematic constraint puts them into the holonomic system category. In this work, the position of a control point on the vessel is controlled, and the orientation dynamics is not directly controlled. Therefore, there is a potential for an oscillatory yaw motion to occur. It is shown that the orientation dynamics, as the internal dynamics of this underactuated system, is stable, i.e., the follower vehicle does not oscillate about its control point during the formation maneuvers. The proposed formation controller relies only on the state information obtained from the immediate neighbors of the vessel and the vessel itself. The effectiveness and robustness of formation control laws in the presence of parameter uncertainty and environmental disturbances are demonstrated by using both simulations and field experiments. The experiments were performed in a natural environment on a lake using a small test boat, and show robust performance to parameter uncertainty and disturbance. This paper reports the first experimental verification of the above mentioned approach, whose unique features are the use of a control point, the zero-dynamic stability analysis, the use of leader-follower method and a nonlinear robust control approach.  相似文献   
2.
Two geometrical formation schemes that allow the definition of any desired three-dimensional formation mesh for a group of helicopters are presented. Each formation scheme, which defines the leader–follower geometry of the formation mesh, has four parameters. These formation parameters are directly used as the output of decentralized controllers that independently control each helicopter in the group. The decentralized controllers are designed using a non-iterative Nonlinear Model Predictive Control (NMPC) method. The Continuation method is used for solving, in real-time, for future control actions that minimize a NMPC cost function. It is shown by analyzing the number of floating point operations per calculation cycle that the calculation load of the NMPC method for this application is quite manageable for today’s industrial embedded computers. Simulations show that the formation schemes along with the NMPC controller can initialize and keep the formation of a group of helicopters even in the presence of bounded parameter uncertainty and environmental disturbance.  相似文献   
3.
In this article, a generalized sensorless method for SRM drives has been explained. By continuous monitoring of the back-EMF, the best version of the sensorless technique is selected and engaged. The robust performance obtained from this technique makes it as attractive candidate for industrial as well as domestic applications. Furthermore, a four-quadrant strategy under sensorless control has been designed and implemented. The proposed method demonstrates simplicity in computation while providing high-precision position information with no extra hardware or memory. The proposed algorithms have been implemented on an experimental SRM test setup. Our findings show that four-quadrant sensorless control of the SRM drive is a feasible technique and can be considered as a technology ready for application. This technique is especially helpful where the characteristics of the application calls for operating in two/four-quadrants or when a closed-loop speed/position control with sensorless strategy is demanded.  相似文献   
4.
In high-performance three-phase pulsewidth-modulated (PWM) converter systems used in generator and motor drives, failure of current sensors will directly interrupt the system performance, and will even cause disastrous consequences. Redundancy in design is one of the popular choices to overcome this issue. However, this usually leads to an undesirable increase in size and cost. This letter presents two novel model-independent current reconstruction methods for three-phase PWM converter systems based on space vector modulation. Using the proposed sensor placement and software algorithm, phase currents within a three-phase converter can be reconstructed to an acceptable level of accuracy under single-survived-sensor ($S^3$) scenario. A hardware prototype is built and fault tolerant algorithm is implemented using a DSP (TMS320F2812). Experiments are conducted under worst-case scenario to verify the flexibility of sensor placement/converter layout and software algorithm.   相似文献   
5.
Silver nanowire coatings are an attractive alternative to indium tin oxide for producing transparent conductors. To fabricate coatings with low sheet resistance required for touchscreen displays, a multi‐layer network of silver nanowires must be produced that may not be cost effective. This problem is counteracted here by modifying the electrical properties of an ultra‐low‐density nanowire network through local deposition of conducting graphene platelets. Unlike other solution‐processed materials, such as graphene oxide, our pristine graphene is free of oxygen functional groups, resulting in it being electrically conducting without the need for further chemical treatment. Graphene adsorption at inter‐wire junctions as well as graphene connecting adjacent wires contributes to a marked enhancement in electrical properties. Using our approach, the amount of nanowires needed to produce viable transparent electrodes could be more than 50 times less than the equivalent pristine high density nanowire networks, thus having major commercial implications. Using a laser ablation process, it is shown that the resulting films can be patterned into individual electrode structures, which is a pre‐requisite to touchscreen sensor fabrication.  相似文献   
6.
Although several variant alleles at the human NAT1 gene locus have been reported, their relationship to phenotypic variations in NAT1 function remains unclear. We have used in-vivo and invitro phenotyping tests, along with PCR-based cloning and heterologous expression, to investigate the extent of variation in NAT1 function and to characterize novel allelic variants at the NAT1 gene locus. The NAT1-selective substrate p-aminosalicylic acid (PAS) was used as a probe for NAT1 function. In-vivo PAS acetylation rates were estimated by determining the ratio of PAS to N-acetylated PAS (AcPAS) in urine and plasma following the oral ingestion of Nemasol Sodium. Excluding outliers, a 65-fold variation in the urinary AcPAS:PAS ratio was observed (n = 144), while a 5.6-fold variation in the plasma AcPAS:PAS ratio was seen in a subset (n = 19) of this sample. Urinary and plasma ratios correlated moderately (r = 0.74, p < 0.0005). One individual (case 244) had a marked impairment of PAS N-acetylation, with 10-fold lower urinary and plasma AcPAS:PAS ratios compared with other subjects. Biochemical investigations in whole blood lysates from case 244 suggested a NAT1 kinetic defect, with a 20-fold increased apparent K(m) for PAS and a 90-fold decreased Vmax for AcPAS formation. We subcloned, sequenced and expressed the protein-coding regions of the NAT1 alleles from case 244 and from seven other selected probands. Sequence analysis revealed the presence of two new variant alleles, designated as NAT1 x 14 and NAT1 x 15, in case 244, as well as one variant, NAT1 x 11, which has been observed in previous investigations. NAT1 x 14 contained a missense mutation (G560-->A) that is predicted to change a single amino acid (Arg187-->Gln), as well as two 3' non-coding region mutations (T1088-->A and C1095-->A) that have previously been observed in the NAT1 x 10 allelic variant. NAT1 x 15 had a single nonsense mutation (C559-->T; Arg187-->stop) and, thus, encodes a truncated protein. The activity of recombinant NAT1 14 mirrored the defective enzyme function in whole blood lysates from case 244, while NAT1 15 was completely inactive. Expressed NAT1 11, on the other hand, had identical activity to the wild type NAT1 4 allele, suggesting that the coding region mutations in this variant are functionally silent. The frequencies of NAT1 x 11, NAT1 x 14 and NAT1 x 15 were 0.021, 0.028 and 0.014 (n = 288 alleles), respectively, suggesting that they are relatively rare in our predominantly Caucasian sample.  相似文献   
7.
Proper synchronization of the excitation with respect to the rotor position is essential in optimal control of switched reluctance motor (SRM) drives. To avoid additional cost, size, and unreliability caused by the external position sensors, magnetic status of the SRM can be directly monitored to detect commutation instants. A one-to-one correspondence between magnetic status of the SRM and rotor position removes the need for an explicit access to the rotor position. In order to obtain a good precision over the entire speed range, educated modifications on the structure of the sensorless strategy is necessary. This is due to the impact of the operational regions on dynamic behavior of the SRM. In addition, introduction of SRM technology to industrial and domestic applications has raised the need for four-quadrant operation of the SRM drives. The present paper introduces a range of strategies that are necessary to accommodate this requirement in a sensorless format. Our experimental findings indicate that high-grade sensorless operation in a four-quadrant SRM drive is possible and can be integrated in a variety of applications.  相似文献   
8.
Switched reluctance machines (SRM) offer attractive attributes for automotive applications. These include robustness to harsh operational conditions, rugged structure, fault resilient performance, and a wide range of speed. The main debate over the adequacy of switched reluctance drives in automotive applications has often focused on efficiency and position sensorless control over the entire speed range, adaptation of control algorithms in the presence of parameter variations, and high levels of acoustic noise and vibration. The present paper demonstrates three key technologies developed over the past few years that have resulted in tangible improvements in the performance of SRM/generators (SRM/G) as related to the above areas of interest. This paper intends to illustrate the new possibilities and remaining challenges in applications of SRM in automotive industry. The proposed technologies have been validated by simulation and experimental results.  相似文献   
9.
10.
已经开发了的ABSs系统改善了突然制动和特别是滑动路面状况时车辆控制。这样的控制目标是在保持车辆合适稳定性及可操纵性和缩短车辆刹车距离情况下在要求的方向增大车轮的牵引力。本文提出了ABSs系统优化的模糊控制器。从保持其车轮滑动值为目标函数获得车轮最大的牵引力和车轮最大的减速度。采用遗传算法优化模糊系统的全部组件。采用误差数整体优化方法收敛接近最优点。仿真结果表明快速收敛和对不同路况的控制器的最好性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号