首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47434篇
  免费   15743篇
  国内免费   559篇
电工技术   1480篇
综合类   734篇
化学工业   18493篇
金属工艺   874篇
机械仪表   1337篇
建筑科学   2441篇
矿业工程   288篇
能源动力   1146篇
轻工业   7728篇
水利工程   554篇
石油天然气   349篇
武器工业   118篇
无线电   8050篇
一般工业技术   12610篇
冶金工业   1311篇
原子能技术   103篇
自动化技术   6120篇
  2024年   52篇
  2023年   204篇
  2022年   450篇
  2021年   767篇
  2020年   1799篇
  2019年   3432篇
  2018年   3393篇
  2017年   3723篇
  2016年   4154篇
  2015年   4347篇
  2014年   4374篇
  2013年   5649篇
  2012年   3439篇
  2011年   3062篇
  2010年   3264篇
  2009年   3112篇
  2008年   2638篇
  2007年   2445篇
  2006年   2165篇
  2005年   1800篇
  2004年   1668篇
  2003年   1579篇
  2002年   1571篇
  2001年   1371篇
  2000年   1253篇
  1999年   607篇
  1998年   205篇
  1997年   212篇
  1996年   175篇
  1995年   103篇
  1994年   108篇
  1993年   86篇
  1992年   75篇
  1991年   62篇
  1990年   47篇
  1989年   48篇
  1988年   51篇
  1987年   36篇
  1986年   38篇
  1985年   22篇
  1984年   16篇
  1983年   16篇
  1982年   18篇
  1981年   21篇
  1980年   10篇
  1979年   12篇
  1977年   13篇
  1976年   16篇
  1975年   6篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Kuo  Shu-Chun  Chien  Tsair-Wei  Chou  Willy 《Scientometrics》2022,127(2):1191-1194
Scientometrics - The article published on 5 July 2021 is well-written and of interest. However, some improvements could be made, such as ten Tables/Figures can be shortened to highlight the focused...  相似文献   
2.
3.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
4.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
5.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
6.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号