首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
电工技术   2篇
化学工业   21篇
建筑科学   2篇
能源动力   1篇
轻工业   3篇
水利工程   1篇
无线电   2篇
一般工业技术   8篇
自动化技术   1篇
  2023年   1篇
  2022年   8篇
  2021年   8篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2000年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Renal auto-immune diseases represent a major source of morbidity in humans. For many years the knowledge on mechanisms of auto-immunity involving the kidney has been uniquely based on animal models. However, these findings often could not be readily translated to humans owing to notably difference in antigen expression by human podocytes. One example is Heymann nephritis (HN), the experimental model of human membranous glomerulonephritis (MGN), which is obtained in rats by injecting antibodies against megalin, a protein that is not present in human glomeruli. Human studies could not be done in the past since sequencing required too much material exceeding what obtainable from tissue biopsies in vivo. Research is now on the way to identify auto-antigens and isolate specific auto-antibodies in humans. New technology developments based on tissue microdissection and proteomical analysis have facilitated the recent discoveries, allowing direct analysis of human tissue in vivo. Major advances on the pathogenesis of MGN, the prototype for the formation and glomerular deposition of auto-antibodies, are now in progress. Two independent groups have, in fact, demonstrated the existence of specific IgG(4) against phospholipase A2 receptor, aldose reductase and Mn-superoxide dismutase in glomerular eluates and in plasma of a prominent part of patients with MGN, suggesting a major role of these proteins as auto-antigens in human MGN. This review will focalize these aspects outlining the contribution of proteomics in most recent developments.  相似文献   
2.
Overexpression of the histone lysine demethylase KDM4A, which regulates H3K9 and H3K36 methylation states, has been related to the pathology of several human cancers. We found that a previously reported hydroxamate‐based histone deacetylase (HDAC) inhibitor (SW55) was also able to weakly inhibit this demethylase with an IC50 value of 25.4 μm . Herein we report the synthesis and biochemical evaluations, with two orthogonal in vitro assays, of a series of derivatives of this lead structure. With extensive chemical modifications on the lead structure, also by exploiting the versatility of the radical arylation with aryldiazonium salts, we were able to increase the potency of the derivatives against KDM4A to the low‐micromolar range and, more importantly, to obtain demethylase selectivity with respect to HDACs. Cell‐permeable derivatives clearly showed a demethylase‐inhibition‐dependent antiproliferative effect against HL‐60 human promyelocytic leukemia cells.  相似文献   
3.
4.
Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e., treatments directed against specific markers. Inhibitors against HER2 are a significant example and they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore, is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is, today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers involved in the study of interactions between cancer and the tumor microenvironment (TME). All these peculiarities characterize AXL as compared to other members of the TAM family. In this review, we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular and biological features, its involvement in tumor progression and its implication as a target in ongoing clinical trials.  相似文献   
5.
In vitro whole‐organism screens of Trypanosoma brucei with representative examples of brain‐penetrant microtubule (MT)‐stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub‐micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.  相似文献   
6.
Sepsis causes high rates of morbidity and mortality in NICUs. The estimated incidence varies between 5 and 170 per 1000 births, depending on the social context. In very low birth-weight neonates, the level of mortality increases with the duration of hospitalization, reaching 36% among infants aged 8–14 days and 52% among infants aged 15–28 days. Early diagnosis is the only tool to improve the poor prognosis of neonatal sepsis. Blood culture, the gold standard for diagnosis, is time-consuming and poorly sensitive. C-reactive protein and procalcitonin, currently used as sepsis biomarkers, are influenced by several maternal and fetal pro-inflammatory conditions in the perinatal age. Presepsin is the N-terminal fragment of soluble CD14 subtype (sCD14-ST): it is released in the bloodstream by monocytes and macrophages, in response to bacterial invasion. Presepsin seems to be a new, promising biomarker for the early diagnosis of sepsis in neonates as it is not modified by perinatal confounding inflammatory factors. The aim of the present review is to collect current knowledge about the role of presepsin in critically ill neonates.  相似文献   
7.
The inositol 1,4,5-triphosphate receptor type 1 (ITPR1) gene encodes an InsP3-gated calcium channel that modulates intracellular Ca2+ release and is particularly expressed in cerebellar Purkinje cells. Pathogenic variants in the ITPR1 gene are associated with different types of autosomal dominant spinocerebellar ataxia: SCA15 (adult onset), SCA29 (early-onset), and Gillespie syndrome. Cerebellar atrophy/hypoplasia is invariably detected, but a recognizable neuroradiological pattern has not been identified yet. With the aim of describing ITPR1-related neuroimaging findings, the brain MRI of 14 patients with ITPR1 variants (11 SCA29, 1 SCA15, and 2 Gillespie) were reviewed by expert neuroradiologists. To further evaluate the role of superior vermian and hemispheric cerebellar atrophy as a clue for the diagnosis of ITPR1-related conditions, the ITPR1 gene was sequenced in 5 patients with similar MRI pattern, detecting pathogenic variants in 4 of them. Considering the whole cohort, a distinctive neuroradiological pattern consisting in superior vermian and hemispheric cerebellar atrophy was identified in 83% patients with causative ITPR1 variants, suggesting this MRI finding could represent a hallmark for ITPR1-related disorders.  相似文献   
8.
Skin disorders are widespread around the world, affecting people of all ages, and oxidative stress represents one of the main causes of alteration in the normal physiological parameters of skin cells. In this work, we combined a natural protein, fibroin, with antioxidant compounds extracted in water from pomegranate waste. We demonstrate the effective and facile fabrication of bioactive and eco-sustainable films of potential interest for skin repair. The blended films are visually transparent (around 90%); flexible; stable in physiological conditions and in the presence of trypsin for 12 days; able to release the bioactive compounds in a controlled manner; based on Fickian diffusion; and biocompatible towards the main skin cells, keratinocytes and fibroblasts. Furthermore, reactive oxygen species (ROS) production tests demonstrated the high capacity of our films to reduce the oxidative stress induced in cells, which is responsible for various skin diseases.  相似文献   
9.
Food Analytical Methods - For consumers, honey is a natural product that should not be subjected to treatment or alteration. Since the question of the presence of genetically modified organisms...  相似文献   
10.
Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5′AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号