首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3411篇
  免费   158篇
  国内免费   21篇
电工技术   102篇
综合类   8篇
化学工业   765篇
金属工艺   78篇
机械仪表   98篇
建筑科学   95篇
矿业工程   6篇
能源动力   251篇
轻工业   211篇
水利工程   26篇
石油天然气   20篇
无线电   347篇
一般工业技术   729篇
冶金工业   318篇
原子能技术   41篇
自动化技术   495篇
  2024年   15篇
  2023年   45篇
  2022年   87篇
  2021年   141篇
  2020年   108篇
  2019年   105篇
  2018年   150篇
  2017年   114篇
  2016年   120篇
  2015年   89篇
  2014年   117篇
  2013年   252篇
  2012年   148篇
  2011年   188篇
  2010年   170篇
  2009年   162篇
  2008年   143篇
  2007年   149篇
  2006年   107篇
  2005年   93篇
  2004年   72篇
  2003年   86篇
  2002年   48篇
  2001年   52篇
  2000年   47篇
  1999年   48篇
  1998年   81篇
  1997年   61篇
  1996年   57篇
  1995年   40篇
  1994年   44篇
  1993年   37篇
  1992年   33篇
  1991年   33篇
  1990年   21篇
  1989年   24篇
  1988年   19篇
  1987年   23篇
  1986年   19篇
  1985年   29篇
  1984年   25篇
  1983年   19篇
  1982年   17篇
  1981年   18篇
  1980年   20篇
  1979年   23篇
  1978年   15篇
  1977年   22篇
  1976年   18篇
  1975年   7篇
排序方式: 共有3590条查询结果,搜索用时 15 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
3.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
4.
5.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
6.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

7.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
8.
In the recent sub-20 nm technology node, the process variability issues have become a major problem for scaling of MOS devices. We present a design for a strained Si/SiGe FinFET on an insulator using a 3D TCAD simulator. The impact of metal gate work function variability (WFV) on electrical parameters is studied. Such impact of WFV for different mole fractions (x) of the SiGe layer in a strained SOI-FinFET with varying grain size is presented. The results show that as the mole fraction is increased, the variability in threshold voltage (σVT) and off current (σIoff) is decreased; while, the variability of on-current (σIon) is increased. A notable observation is the distribution of electrical parameters approaches a normal distribution for smaller grain sizes.  相似文献   
9.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
10.
The cracks in the workpiece specimens can reduce the fatigue life of any machine components. Since the residual stress has a considerable amount of influence on determining crack formation over the machined surface, it is very essential to analyze the residual stress developed in any machining process. However, it is a very tedious process to compute the residual stress over the machined surface. In the present study, an endeavor has been made to measure and analyze the residual stress of machined silicon steel as a workpiece using the EDM process with different energy distribution. The nano-indentation method was used to compute the residual stress produced over the machined surface. From the experimental results, it was found that the uniform energy distribution has produced higher compressive residual stress owing to the tiny and uniform spark energy distribution. It has also been observed that the tool electrode has a considerable amount of influence on determining development of residual stress in the EDM process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号