首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
电工技术   1篇
综合类   1篇
化学工业   4篇
金属工艺   2篇
能源动力   3篇
轻工业   1篇
无线电   5篇
一般工业技术   5篇
冶金工业   5篇
自动化技术   6篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1986年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
The high-speed response properties of resonant cavity enhanced (RCE) photodetectors have been investigated. The limitations on the high-speed performance of photodiodes and the advantages of RCE-detection are discussed. Transient response of heterojunction photodiodes under pulsed optical illumination has been simulated using the method described in Part I. Results on conventional AlGaAs/GaAs and RCE GaAs/InGaAs heterojunction p-i-n photodiodes are presented. For small area detectors, almost 50% bandwidth improvement along with a two-fold increase in efficiency is predicted for RCE devices over optimized conventional photodiodes. A nearly three-fold enhancement in the bandwidth-efficiency product was shown  相似文献   
2.
Pigeon Pea (Cajanus cajan (L.) Millsp.) is a common food crop used in many parts of the world for nutritional purposes. One of its chemical constituents is cajanin stilbene acid (CSA), which exerts anticancer activity in vitro and in vivo. In an effort to identify molecular targets of CSA, we performed a kinome-wide approach based on the measurement of the enzymatic activities of 252 human kinases. The serine-threonine kinase WNK3 (also known as protein kinase lysine-deficient 3) was identified as the most promising target of CSA with the strongest enzymatic activity inhibition in vitro and the highest binding affinity in molecular docking in silico. The lowest binding affinity and the predicted binding constant pKi of CSA (−9.65 kcal/mol and 0.084 µM) were comparable or even better than those of the known WNK3 inhibitor PP-121 (−9.42 kcal/mol and 0.123 µM). The statistically significant association between WNK3 mRNA expression and cellular responsiveness to several clinically established anticancer drugs in a panel of 60 tumor cell lines and the prognostic value of WNK3 mRNA expression in sarcoma biopsies for the survival time of 230 patients can be taken as clues that CSA-based inhibition of WNK3 may improve treatment outcomes of cancer patients and that CSA may serve as a valuable supplement to the currently used combination therapy protocols in oncology.  相似文献   
3.
We describe a new method of sensing the linear polarization of light using resonant cavity enhanced (RCE) photodetectors. The RCE detectors are constructed by integrating a thin absorption region into an asymmetric Fabry-Perot cavity. The top reflector is formed by the semiconductor air interface while the bottom mirror is a distributed Bragg reflector (DBR). Quantum efficiency of these RCE devices can be controlled by tuning the cavity length by recessing the top surface of the detector for off-normal incidence of light the reflectivity of the semiconductor-air interface can be significantly different for TE(s) and TM(p) polarizations. A pair of monolithically integrated RCE photodetectors with cavity lengths tuned for resonance and antiresonance provide a large contrast in response to TE and TM polarizations. An alternative polarization sensor can be formed by vertically integrating a conventional and a RCE photodetector. We show that a large contrast in the TE/TM responsivities of the vertical cavity polarization detectors (VCPD) can be achieved, thus combining detection and polarization sensing in a single mesa semiconductor device. These devices alleviate the problems associated with the bulkiness and critical alignment constraints of the conventional sensors based on polarizing filters or splitters and have potential for fabrication of monolithic smart pixels and imaging arrays  相似文献   
4.
Resonant cavity enhanced (RCE) photodiodes (PD's) are promising candidates for applications in optical communications and interconnects where high-speed high-efficiency photodetection is desirable. In RCE structures, the electrical properties of the photodetector remain mostly unchanged; however, the presence of the microcavity causes wavelength selectivity accompanied by a drastic increase of the optical field at the resonant wavelengths. The enhanced optical field allows to maintain a high efficiency for faster transit-time limited PD's with thinner absorption regions. The combination of an RCE detection scheme with Schottky PD's allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes. In top-illuminated RCE Schottky PD's, a semitransparent Schottky contact can also serve as the top reflector of the resonant cavity. We present theoretical and experimental results on spectral and high-speed properties of GaAs-AlAs-InGaAs RCE Schottky PD's designed for 900-nm wavelength  相似文献   
5.

Anti-slip control systems are essential for railway vehicle systems with traction. In order to propose an effective anti-slip control system, adhesion information between wheel and rail can be useful. However, direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding. Therefore, a proportional–integral controller, which operates simultaneously with a recently proposed swarm intelligence-based adhesion estimation algorithm, is proposed in this study. This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail. To validate the methodology, a tram wheel test stand with an independently rotating wheel, which is a model of some low floor trams produced in Czechia, is considered. Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.

  相似文献   
6.
[3H]Quinuclidinyl benzilate binding properties of cerebral cortex, hippocampus, hypothalamus and brainstem of rats subjected to transient forebrain ischemia or severe hemorrhagic shock were investigated. Maximal binding capacities (Bmax) were not significantly different from control animals in either model. On the other hand, significant increases in binding affinities at all four brain regions in the ischemia-reperfusion group and at hypothalamic and brainstem membranes in the hemorrhagic shock group were observed. Kd values obtained in cortex and hippocampus of animals in shock were similar to control values. It was concluded that in brain ischemia models, the number of brain muscarinic receptors do not change at early stages, but binding affinities increase most likely due to systemic hypotension rather than reperfusion. The well-developed circle of Willis seems to protect cortical and hippocampal muscarinic receptors from hypoxia-induced changes.  相似文献   
7.
This study was conducted to determine the impacts of heat treatment on lap shear strength, density, and mass loss of black pine wood. In the study, black pine wood boards bonded with polyurethane were subjected to temperatures of 160, 180, and 200°C for durations of 2 and 6 hours. Specimens having two layers were prepared from untreated and treated wood for mechanical testing of bond lines. Data were analyzed using variance analysis and Tukey's test to determine the impacts of changes in density and mass of heat-treated black pine wood on lap shear strength. The results indicated that the lap shear strength of black pine wood decreased as the intensity of heat treatment increased. The results also indicated that the minimum and maximum percentage decreases of lap shear strength were approximately 27% for 160°C and 2 hours and 78% for 200°C and 6 hours.  相似文献   
8.
Traditional cable driven elevators perform poorly in high-rise buildings because the weight of the cable limits the payload, and its elasticity degrades control performance. Further, it is not mechanically possible to include several elevator cars in the same hoistway because of the cable. However such multi-car elevator systems are desirable since they reduce passenger waiting time and reduce the space requirements of the elevator system. A promising solution is to use long armature linear motors spanning the hoistway to directly drive elevator cages. In such applications, the mover position sensing method must be explicitly addressed since most active position sensing methods require traveling cables, which are also an obstacle for multi-car elevator systems.In this paper, the linear-motor active position sensing method is formally introduced and the principle of operation, design and real-time operation methods are presented. The proposed method is used to measure the position of the mover of a long armature permanent magnet linear synchronous motor requiring no active components on the mover, thus traveling cables are eliminated. The principle of operation is inspired by linear variable differential transformer: A magnetic shunt positioned at a fixed distance ahead of the mover deforms the magnetic field created by one of the armature coils. The deformation can be determined by measuring the induced voltages on the neighboring coils, and the position of the shunt, and thus the mover, can be calculated.A design method for the optimal dimensions of the shunt for a given armature to provide long measurement range and small maximum position error is presented, accompanied by a real-time measurement algorithm that will enable the motor to be driven using the method. Finally the method is verified by simulations and experimental results conducted on a full scale linear-motor elevator prototype that was constructed in the laboratory.  相似文献   
9.
Aerostatic guideways are often used in machines requiring very high motion accuracy such as coordinate measuring machines. Currently, positioning error analysis for such machines focuses on the relationship between volumetric errors on one hand and axes’ motion errors and axes’ relative location errors on the other. The internal mechanisms causing motion errors are rarely considered. In order to gain a deeper understanding of aerostatic guideways, this paper investigates the relationship between the motion errors of the axis’ carriage and the guideways’ geometric errors both mathematically and experimentally. The analytical model uses bearings location and stiffness, guideway geometry and static equilibrium to produce a model in matrix form. Validation experiments are conducted on a machine axis moving on aerostatic guideways with and without preload.  相似文献   
10.
In this study, an amino-alkyl siloxane oligomer was used as a hydrophobation agent in order to improve the behaviour of particleboards under moist and outdoor weathering conditions and to be compared to conventionally used paraffin waxes. Melamine-urea-phenol-formaldehyde (MUPF, 15.0 %) was used as adhesive and mixed with the hydrophobation agents at concentrations of 1, 3, and 5 % related to the dry particle mass. The siloxane oligomer improved the water-related properties (thickness swelling, water uptake, internal bond strength (IBS) and IBS after boil test) in comparison to a control without hydrophobation agent. It also tended to enhance bending strength, modulus of elasticity, and IBS compared to specimens containing wax. IBS after boil test was significantly higher at addition of 3 and 5 % siloxane than that of wax-added reference boards. Specimens with siloxane oligomer, however, displayed higher thickness swelling and water uptake than those with wax added. It is assumed that the siloxane oligomer is able to contribute to bonding via hydrogen and covalent bonds and particularly enhance wet strength, while waxes exclusively act by their non-polar nature and, thus, water repellent behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号