首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   17篇
  国内免费   1篇
电工技术   5篇
化学工业   50篇
金属工艺   2篇
机械仪表   24篇
建筑科学   7篇
能源动力   14篇
轻工业   13篇
水利工程   3篇
石油天然气   2篇
无线电   37篇
一般工业技术   65篇
冶金工业   9篇
原子能技术   4篇
自动化技术   37篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   22篇
  2019年   20篇
  2018年   15篇
  2017年   18篇
  2016年   14篇
  2015年   16篇
  2014年   19篇
  2013年   29篇
  2012年   9篇
  2011年   19篇
  2010年   11篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
1.
2.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
3.
4.
5.
Myofibroblasts that express alpha-smooth muscle actin (alpha-SMA) are detected in many chronic inflammatory diseases. Transforming growth factor-beta (TGF-beta) is a potent inducer of myofibroblast accumulation in tissues. In this study, scattered myofibroblasts and TGF-beta were quantified and localized in nasal polyps (NPs) and normal nasal mucosa (NM). NPs were sampled in 16 patients during ethmoidectomy and NM was obtained from 10 control subjects during rhinoplasty. alpha-SMA and TGF-beta were detected using immunohistochemistry and the numbers of labeled cells were quantified (alpha-SMA and TGF-beta indices) and compared between NPs and NM. In eight NPs, in which the pedicle was preserved, alpha-SMA and TGF-beta were evaluated and compared in the pedicle, central, and tip areas. Finally, TGF-beta expression was compared between low (zone 1), moderate (zone 2), and high (zone 3) zones of alpha-SMA positivity. alpha-SMA and TGF-beta indices were significantly higher in NPs than in NM. In the eight selected NPs, alpha-SMA-positive cells were significantly more abundant in the pedicle than in the central and tip areas, whereas TGF-beta-positive cells were significantly more numerous in the pedicle than in the tip area. The number of TGF-beta-positive cells was significantly higher in zone 3 than in zone 1 of alpha-SMA positivity. Myofibroblasts, which are abundant in NPs but rare in NM, could be involved in the growth of NPs by inducing extracellular matrix accumulation. The local development of myofibroblasts in NPs could be controlled by TGF-beta, locally produced by inflammatory cells.  相似文献   
6.
The hydrodynamics of a two-dimensional gas–solid fluidized bed reactor were studied experimentally and computationally. Computational fluid dynamics (CFD) simulation results from a commercial CFD software package, Fluent, were compared to those obtained by experiments conducted in a fluidized bed containing spherical glass beads of 250– in diameter. A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. Momentum exchange coefficients were calculated using the Syamlal–O’Brien, Gidaspow, and Wen–Yu drag functions. The solid-phase kinetic energy fluctuation was characterized by varying the restitution coefficient values from 0.9 to 0.99. The modeling predictions compared reasonably well with experimental bed expansion ratio measurements and qualitative gas–solid flow patterns. Pressure drops predicted by the simulations were in relatively close agreement with experimental measurements at superficial gas velocities higher than the minimum fluidization velocity, Umf. Furthermore, the predicted instantaneous and time-average local voidage profiles showed similarities with the experimental results. Further experimental and modeling efforts are required in a comparable time and space resolutions for the validation of CFD models for fluidized bed reactors.  相似文献   
7.
Gelatin was doped with 1 %, 3 %, 5 % and 10 % cadmium sulfide nanoparticles in weight concentrations forming the gelatin-cadmium sulfide nanocomposites and irradiated by various electron beam doses equals 50 kGy, 75 kGy, 100 kGy, and 150 kGy using 3 MeV – 3 mA electron accelerator. The applied alternating current electrical field frequency ranging from 70 Hz to 5 MHz is what caused the fluctuation in dielectric properties and alternating current electrical conductivity of these nanocomposites. The results showed that the films of 1 %, 3 %, 5 %, and 10 % for blank (nanocomposite film without electron beam irradiation) nanocomposites had the highest dielectric parameters (έ, ϵ′′, tan δ) at 0.5 kHz with values of (0.696, 0.0233, 0.034), (0.533, 0.0114, 0.0215), (0.402, 0.001196, 0.003), and (0.459, 0.00418, 0.0091), respectively. However, the lowest dielectric parameters were (0.645, 0.00618, 0.0066), (0.523, 0.00165, 0.0215), (0.417, 0.00035, 0.0008), and (0.455, 0.00066, 0.0015) at 5 MHz, respectively. The highest conductivity values for blank nanocomposites of 1 %, 3 %, 5 %, and 10 % were 1.79×10−4 S/m, 1.45×10−4 S/m, 1.16×10−4 S/m, 1.27×10−4 S/m at 5 MHz, and the lowest values were 1.92×10−8 S/m, 1.49×10−8 S/m, 1.13×10−8 S/m, 1.26×10−8 S/m at 0.5 kHz, respectively. For irradiated nanocomposites at 5 MHz, the dielectric constant order for 1 % was 100 kGy, 150 kGy, 50 kGy, and 75 kGy with values 0.63, 0.537, 0.532, and 0.523, respectively. For 10 % weight concentration, the order was 50 kGy, 100 kGy, 150 kGy, and 75 kGy with values 0.515, 0.477, 0.47, and 0.437, respectively. Otherwise the dielectric constant order for 3 % and 5 % was 100 kGy, 75 kGy, 150 kGy, and 50 kGy. The highest dielectric properties and conductivity values for blank and irradiated nanocomposites were observed at 100 kGy for 1 %, 3 %, and 5 %.  相似文献   
8.
The use of colloidal quantum dots (CQDs) as a gain medium in infrared laser devices has been underpinned by the need for high pumping intensities, very short gain lifetimes, and low gain coefficients. Here, PbS/PbSSe core/alloyed-shell CQDs are employed as an infrared gain medium that results in highly suppressed Auger recombination with a lifetime of 485 ps, lowering the amplified spontaneous emission (ASE) threshold down to 300 µJ cm−2, and showing a record high net modal gain coefficient of 2180 cm−1. By doping these engineered core/shell CQDs up to nearly filling the first excited state, a significant reduction of optical gain threshold is demonstrated, measured by transient absorption, to an average-exciton population-per-dot 〈Nthg of 0.45 due to bleaching of the ground state absorption. This in turn have led to a fivefold reduction in ASE threshold at 〈NthASE = 0.70 excitons-per-dot, associated with a gain lifetime of 280 ps. Finally, these heterostructured QDs are used to achieve near-infrared lasing at 1670 nm at a pump fluences corresponding to sub-single-exciton-per-dot threshold (〈NthLas = 0.87). This work brings infrared CQD lasing thresholds on par to their visible counterparts, and paves the way toward solution-processed infrared laser diodes.  相似文献   
9.
A new methodology, namely, artificial neural network (ANN) approach was proposed for modeling and predicting flow behavior of the polyethylene melt through nanochannels of nanoporous alumina templates. Wetting length of the nanochannels was determined to be a function of time, temperature, diameter of nanochannels, and surface properties of the inner wall of the nanochannels. An ANN was designed to forecast the relationship between the length of wetting as output parameter and other aforementioned parameters as input variables. It was demonstrated that the ANN method is capable of modeling this phenomenon with high accuracy. The designed ANN was then employed to obtain the wetting length of the nanochannels for those cases, which were not reported by the wetting experiments. The results were then analyzed statistically to identify the effect of each independent variable, namely, time, temperature, diameter of nanochannels, and surface properties of the inner wall of nanochannels as well as their combinations on the wetting length of the nanochannels. Interesting results were attained and discussed.  相似文献   
10.
The vehicle routing problem with deliveries and pickups is a challenging extension to the vehicle routing problem that lately attracted growing attention in the literature. This paper investigates the relationship between two versions of this problem, called “mixed” and “simultaneous”. In particular, we wish to know whether a solution algorithm designed for the simultaneous case can solve the mixed case. To this end, we implement a metaheuristic based on reactive tabu search. The results suggest that this approach can yield good results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号