首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
电工技术   3篇
  2018年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This paper examines the influence of aggregated power output fluctuation of photovoltaic power generation system (PVS) on the power system frequency focusing on ramp events of aggregated PVS power output. A numerical simulation model of economic load dispatching control (EDC) and load frequency control (LFC) is used together with a PVS power output forecasting model and a unit commitment (UC) scheduling model developed in our preceding study. As a result, in the case of ramp event with long duration and high ramp rate, the frequency violation occurs when the power output of controllable generators with high load‐following capability reaches to upper/lower limit even if the power output of low load‐following capability generators is still available. If the load dispatching scheme is tentatively changed from the conventional EDC using an equal incremental fuel cost rule to, for example, a dispatching policy based on the capacity without the consideration of fuel cost, the aggregated load‐following capability can be kept, avoiding the frequency violation.  相似文献   
2.
The inductor losses in a three‐phase ac filter inductor used in a three‐phase pulse‐width modulation (PWM) inverter are evaluated. First, a three‐phase inductor is designed to obtain the same value of inductance for each phase. Then, based on the design, a three‐phase inductor that uses two magnetic materials is proposed. The conversion efficiency of a 1 kVA three‐phase PWM inverter that uses the conventional and proposed ac filter inductors is simulated. Simulation results show that conversion efficiency improves. Finally, the conversion efficiency of an actual three‐phase 1 kVA PWM inverter that uses the conventional and proposed ac filter inductors is measured. In the experiment, the conversion efficiency obtained for the case of the proposed inductor improves by approximately 1% at low power load as compared to the conventional inductor. Furthermore, the calculated inductor losses are in good agreement with measured losses. Improvement in efficiency is verified trough simulations and experiments.  相似文献   
3.
The present paper introduces a single‐phase utility interactive inverter with a power decoupling function. In a conventional single‐phase inverter, power pulsation at twice the grid frequency appears in the input power. Hence, electrolytic capacitors having large capacitances have been connected to the DC input terminal to stabilize the input DC‐bus voltage. Because the lifetime of the electrolytic capacitor is relatively shorter than that of another component, the lifetime of the inverter is affected by the capacitor. In order to prevent such a problem, a novel single‐phase inverter circuit with an active power decoupling function is introduced. The pulsating power on the input DC‐bus line and the pulsated energy on the input DC capacitor is transferred to the energy in a small film capacitor. Hence, the extension of the inverter lifetime can be expected by substituting a small film capacitor for the large electrolytic capacitors. In addition, the loss in the power decoupling circuit is very small; hence, the reduction in the overall conversion efficiency of the inverter can be minimized. The effectiveness of the proposed method is verified using a 300 W experimental setup.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号