首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
电工技术   1篇
化学工业   1篇
一般工业技术   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
身处在行业竞争异常激烈的家电产业,格兰仕时刻充满了危机感。在与格兰仕集团总裁办副主任兼新闻发言人赵为民先生采访中,他用自己的言语向我们充分展现了格兰仕在管理上的理性。或许,对于格兰仕,一直想把保持清醒转化成一种能力。  相似文献   
2.
The present work employs an experimental design methodology to optimize the spray-drying production of micron-size hollow aggregates of biocompatible silica nanoparticles that are aimed to serve as drug delivery vehicles in inhaled photodynamic therapy. To effectively deliver the nanoparticles to the lung, the aerodynamic size (dA) of the nano-aggregates, which is a function of the geometric size (dG) and the degree of hollowness, must fall within a narrow range between 2 and 4 μm. The results indicate that (1) the feed concentration, (2) the feed pH, and (3) the ratio of the gas atomizing flow rate to the feed rate are the three most significant parameters governing the nano-aggregate morphology. Spray drying at a low pH (<7) and at a low feed concentration (<1%, w/w) generally results in nano-aggregates having small geometric and aerodynamic sizes (dA = dG  3 μm) with a relatively monodisperse size distribution. Spray drying at a higher feed concentration produces nano-aggregates having a larger dG but with a multimodal particle size distribution. A trade-off therefore exists between having large dG to improve the aerosolization efficiency and obtaining a uniform particle size distribution to improve the dose uniformity.  相似文献   
3.
Objective: The objective of this work is to manufacture hollow spherical nanoparticulate aggregates for use as an ultrasound contrast agent by means of spray drying of nanoparticulate suspension at a fast drying rate. Methodology: Biocompatible PMMA-MeOPEGMA and silica nanoparticles are used as the model nanoparticles. The impacts of changing the nanoparticle concentration, pH, and spray drying operating condition on the size and shell thickness-to-particle radius (S/R) ratio, which governs the shell mechanical stability, are investigated. Results and conclusion: The results indicate that the hollow microspheres size varies between 2 and 10 μm having S/R ratio between 2% and 4%, where the smaller size particles exhibit a higher S/R ratio. The resultant S/R ratio is found to be more influenced by process parameters acting at the nanoparticle scale (e.g., suspension pH) than by the spray drying operating condition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号