首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
To study the stereostructure by X-ray and the technology of extracting acankoreanogenin from the leaves of Acanthopanax graeilistylus W. W. Smith (AGS), the crystal structure was measured with a Bruker APEX-Ⅱ area-detector diffractometer instrument and the technology of extracting in combination hydrolysis in situ (ECHS) was compared with these of traditional methods. The crystal belongs to the monoclinic system, space group P2b with unit cell parameters: a=(8.3652±0.0006) nm, b=(24.721±0.002) nm, and c=(14.5587±0.0011) nm, α=90°, β=97.850 (4) °, γ=90 °, V=2982.51 nm3, Dc= 1.179 mg/m3, and the molecular number (Z) of elementary structures was 2. The comparisons show that the extraction rate of acankoreanogenin with ECHS methods is much higher than that of traditional methods. Then, central composite design-response surface methodology (CCD-RSM) was adopted for optimizing the extraction rate of ECHS methods. The optimized values of extraction parameters are as follows: for the for extraction process of acid hydrolysis are that extraction time 110.8 min, solvent-herb ratio 11.5 and acid content 5.25%; the best extraction process of basic hydrolysis are that extract time 120 min, solvent-herb ratio 8.7 and the alkali content 8.79%. Finally, the extracts were purified with decolorizing carbon after alkali solution and acid-isolation and purity of acankoreanogenin was 98.7%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号