首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
针对现有疲劳状态检测方法无法适用于疫情防控下的驾驶员,利用改进后的YOLOv5目标检测算法,对驾驶员的面部区域进行检测,建立多特征融合的疲劳状态检测方法.针对公交驾驶特性,建立包含佩戴口罩和未佩戴口罩情况的图像标签数据.通过增加YOLOv5模型的特征采样次数,提高眼、嘴、面部区域的检测精度.利用BiFPN网络结构保留多尺度的特征信息,使得预测网络对不同大小的目标更敏感,提升整体模型的检测能力.结合人脸关键点算法提出参数补偿机制,提高眨眼、打哈欠帧数的准确率.将多种疲劳参数融合归一化处理,开展疲劳等级划分.公开数据集NTHU和自制数据集的验证结果表明,该方法对佩戴口罩和未佩戴口罩情况均可以进行眨眼、打哈欠识别,可以准确地判断驾驶员的疲劳状态.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号